Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase

Pengfei Fang, Xue Yu, Seung Jae Jeong, Adam Mirando, Kaige Chen, Xin Chen, Sunghoon Kim, Christopher S. Francklyn & Min Guo

Abstract

The polyketide natural product borrelidin displays antibacterial, antifungal, antimalarial, anticancer, insecticidal and herbicidal activities through the selective inhibition of threonyl-tRNA synthetase (ThrRS). How borrelidin simultaneously attenuates bacterial growth and suppresses a variety of infections in plants and animals is not known. Here we show, using X-ray crystal structures and functional analyses, that a single molecule of borrelidin simultaneously occupies four distinct subsites within the catalytic domain of bacterial and human ThrRSs. These include the three substrate-binding sites for amino acid, ATP and tRNA associated with aminoacylation, and a fourth ‘orthogonal’ subsite created as a consequence of binding. Thus, borrelidin competes with all three aminoacylation substrates, providing a potent and redundant mechanism to inhibit ThrRS during protein synthesis. These results highlight a surprising natural design to achieve the quadrivalent inhibition of translation through a highly conserved family of enzymes.

Article Site: https://www.nature.com/articles/ncomms7402

Original Document: https://www.nature.com/articles/ncomms7402.pdf

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

©2010-2019 Medicinal Bioconvergence Research Center. All rights reserved.

Log in with your credentials

Forgot your details?