강원대 정현석, 을지대 문지영, 카이스트 김필한 교수와 중앙연계 김상범의 공동 연구 논문, JCB의 Spotlight로 선정

강원대 정현석, 을지대 문지영, 카이스트 김필한 교수와 중앙연계 김상범이 공동 연구한 논문이 THE JOURNAL OF CELL BIOLOGY의 Spotlight로 선정되었습니다.

 

KRS: A cut away from release in exosomes

Cancer cells often trigger an inflammatory process, which in some cases may be driven by the presence of lysyl-tRNA synthetase (KRS) in the medium. Kim et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201605118) now demonstrate that cleavage of the KRS by caspase-8 inside cells triggers its interaction with syntenin and its release in inflammatory exosomes.

Aminoacyl-tRNA synthetases (ARSs) are intriguing enzymes. Intracellularly, they catalyze the covalent attachment of amino acids to tRNAs and are key regulators of protein translation. However, these housekeeping enzymes have many other tricks up their sleeves. In the cell, several ARSs are also able to regulate gene expression at the level of transcription, splicing, and translation but via noncatalytic and unique mechanisms. ARSs also have different functions in the extracellular space, where they can elicit cytokine signaling responses that control angiogenesis, induce immune and proinflammatory gene expression programs, and trigger cell migration or apoptosis. The response elicited by particular ARSs is specific to the target cells (Son et al., 2014). For instance, when present in the extracellular medium, lysyl-tRNA synthetase (KRS) binds to macrophages and monocytes and activates MAPK signaling pathways that induce macrophage migration and TNF production (Park et al., 2005). How ARSs are released to the extracellular medium to carry out these activities is unknown. ARSs do not contain a signal peptide, and pharmacological agents blocking secretion through the secretory pathway have no effect on the amount of ARS in the medium. For a while, the presence of ARSs in the extracellular medium was thus thought to be caused by their passive release from cells that have undergone necrosis. In this issue, Kim et al. reinvestigate how KRS is released from cancer cells and find that this occurs through a caspase-8– and syntenin-dependent incorporation of KRS in exosomes.

http://jcb.rupress.org/content/early/2017/06/15/jcb.201706039

17 KRS synopsis_jcb.201706039

Related Post

“랩퍼니를 아십니까?” 내달 8일 테크페어 여는 ‘바이오콘...
views 113
"랩퍼니를 아십니까?" 내달 8일 테크페어 여는 '바이오콘'서울약대 김성훈 단장 "파마, 테크, 서비스를 한 곳에"2015-06-26 06:00:06실험실(Lab)과 제약회사(Company)의 합작으로 불릴 만한 '랩퍼니(Labpany)'.이 생소한 신조어를 상징하고 ...
Dr. Jung Min Han got an award for Academic Excelle...
views 372
Last October 19th and 20th, Biocon’s PI Workshop was held in YeoSu, JunNam Province. Dr. Jung Min Han got an award for Academic Excellency and P...
The collaboration work with Dr. Yunje Cho’s ...
views 83
The collaboration work with Dr. Yunje Cho's team and Biocon ICU got an approval to be published in PNAS. The title is "Structure of the ArgRS-GlnRS-AI...
‘면역력 높여 바이러스 치료’ 세계 최초 규명...
views 232
‘면역력 높여 바이러스 치료’ 세계 최초 규명 입력 2016.09.06 (07:41) | 수정 2016.09.06 (09:16) <앵커 멘트> 국내 연구진이 면역 반응을 담당하는 단백질을 활성화해 바이러스 증식을 억제하는 과정을 세...
0 Comments

Leave a reply

Your email address will not be published. Required fields are marked *

*

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

©2010-2017 Medicinal Bioconvergence Research Center. All rights reserved.

Log in with your credentials

Forgot your details?