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Summary

Although aminoacyl-tRNA synthetases (ARSs) are complexes is their ability to interact with the three non-
housekeeping enzymes essential for protein synthesis, they enzymatic factors. These factors are required not only for
can play non-catalytic roles in diverse biological processes. the catalytic activity and stability of the associated ARSs,
Some ARSs are capable of forming complexes with each such as isoleucyl-, methionyl-, and arginyl-tRNA
other and additional proteins. This characteristic is synthetase, but also for diverse signal transduction
most pronounced in mammals, which produce a pathways. They may thus have joined the ARS community
macromolecular complex comprising nine different ARSs to coordinate protein synthesis with other biological
and three additional factors: p43, p38 and pl8. We have processes.

been aware of the existence of this complex for a long time,

but its structure and function have not been well

understood. The only apparent distinction between the Key words: Aminoacyl-tRNA synthetase, Macromolecular protein
complex-forming ARSs and those that do not form complex, Multi-functionality, Protein network, Protein synthesis

Introduction information from nucleic acids to proteins, they are thought to
The human genome project bewildered us by revealing that oigve emerged early in evolution and to be structurally highly
cells produce fewer proteins than expected. However, we atailored to specific recognition of substrate amino acids and
increasingly realizing that the problem of defining the roles ofRNAs. Although the catalytic activities of these enzymes
proteins is not less complex, because they are structuralfgpresent their essential role in maintenance of cell viability,
and functionally more intertwined than we thought. Thusaccumulating evidence demonstrates that they in fact are
dissecting the network of multi-functional cellular proteins hag/ersatile, multi-functional proteins regulated by a diverse set
become one of the major tasks of the post-genome-proje@f control mechanisms. This functional flexibility appears to
era. Since the activity of a protein can be regulated bye extended through physical interactions with each other, as
systems involving subcellular location, expression, secretioell as with additional cofactors, to areas not directly related
oligomerization or complex formation, the determination ofto protein synthesis. These include RNA processing and
protein function is a formidable task (Jeffery, 1999). In this lindrafficking, apoptosis, rRNA synthesis, angiogenesis and
of work, proteins that can have multiple distinct functionsinflammation (Martinis et al., 1999; Ibba and Soll, 2001; Ko et
represent a particularly interesting challenge. al., 2002) (Table 1). These non-canonical and non-catalytic

Translation is one of the most complex biological processe#jnctions depend on their ability to engage in transcriptional
involving diverse protein factors and enzymes as well agontrol, DNA and RNA binding and signal-dependent protein-
messenger and transfer RNAs. As this process is required for tAgotein interactions, and be regulated by cellular localization,
basic operation of cells, many translational factors and enzymedernative splicing and extracellular secretion. For instance,
are considered to be housekeeping proteins. Aminoacyl-tRNEscherichia coli TRS' binds to its own mRNA leader
synthetases (ARSS) catalyze the ligation of specific amino acigéequence, which mimics tRNA structure. Binding of TRS to
to their cognate tRNAs, which is the initial step in proteinthe mRNA prevents the 30S ribosomal subunit from docking
synthesis. The aminoacylation reaction proceeds in two stage¥)to the ribosome-binding sequence of the mRNA, thereby
First, ARSs activate their substrate amino acids by formin§locking the synthesis of the enzyme (Brunel et al., 1993;
aminoacyl adenylate. Second, the enzyme-bound reactidtomby et al., 1996). In additiok. coli AlaRS' can bind to a
intermediates are transferred to tha&eptor end of the tRNAs palindromic sequence flanking the transcriptional start site of
docking onto their active sites. Because tRNAs canndts own gene, repressing its expression. Interestingly, the DNA-
distinguish amino acids conjugated to their ends, the correbinding capacity of this enzyme is enhanced by elevated
recognition of amino acids and tRNAs by these enzymes is eoncentrations of the cognate amino acid (Putney and
crucial determinant to maintain the fidelity of protein synthesisSchimmel, 1981).

Mitochondrial YRS of Neurospora crassa and

i i i i TARSs are generally defined using the single-letter code. Thus, TRS is the aminoacyl-
Moonllghtlng functions of ARS protems tRNA synthetase for threonine. AlaRS is used for the aminoacyl-tRNA synthetase

Since ARSs play a crucial part in the flow of geneticresponsible for alanine.
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Table 1. Non-canonical activities of ARSs

Species ARSs Function References

Escherichia coli TRS Translational control Romby et al., 1996; Brunel et al., 1993

E. coli AlaRS Transcription control Putney et al., 1981

Neurospora crassa Mitochondrial YRS Splicing Akins et al., 1987; Cherniack et al., 1990
Saccharomyces cerevisiae  Mitochondrial LRS Splicing Herbert et al., 1988; Labouesse, 1990

Homo sapiens Cytoplasmic YRS Angiogenic cytokine Wakasugi et al., 2002a; Wakasugi et al., 2002b
H. sapiens Cytoplasmic WRS Angiostatic cytokine Otani et al., 2002; Wakasugi et al., 2002b

H. sapiens Cytoplasmic MRS Transcription of rRNA Ko et al., 2000

H. sapiens Cytoplasmic QRS Anti-apoptosis Ko et al., 2001a

mitochondrial LRS of yeast species are required for thet al., 1983; Mirande et al., 1985a; Sanders et al., 1996) and
splicing of group | introns (Herbert et al., 1988; Cherniack etolocalization of these components have been described
al., 1990; Labouesse, 1990). By contrast, human YRS can lBarbarese et al., 1995). ARSs can be classified into two groups
split by polymorphonuclear (PMN) elastase into two fragmentdased on their structural features (Eriani et al., 1990; Burbaum
that display distinct cytokine activities (Wakasugi andand Schimmel, 1991; Cusack et al., 1991). Class | ARSs each
Schimmel, 1999a; Wakasugi and Schimmel, 1999b). One gfossess a Rossman fold in their catalytic domains, whereas
the fragments (mini-YRS) contains a conserved ELR motitlass Il enzymes contain three homologous motifs with
identical to that found in CXC chemokines such as interleukimlegenerate sequence similarity. ARSs can also be grouped on
8 (IL-8), Gro, Grof3, Groy and NAP-2, which act as the basis of their ability to form complexes with each other and
angiogenic factors (Herbert et al., 1988; Clark-Lewis et al.non-enzymatic factors. Among the complexes formed by ARSS,
1991; Clark-Lewis et al., 1993; Arenberg et al., 1997). Aghe mammalian ARS complex is the most intriguing (Robinson
expected, mini-YRS induces angiogenesis (Wakasugi et akf al., 2000; Kim et al.,, 2002; Ko et al., 2002; Han et al.,
2002a). Whereas human YRS is converted into two distinc2003). This complex is distinctive compared with other
cytokines by proteolytic processing (Wakasugi and Schimmemacromolecular protein complexes in that its components
1999a; Wakasugi and Schimmel, 1999b), an N-terminallare enzymes that carry out similar catalytic reactions
truncated form of WRS, possibly generated through alternativemultaneously, and only a subset of ARSs are involved.
splicing, works as an anti-angiogenic cytokine (Otani et al., Although there is still some ambiguity about the
2002; Wakasugi et al., 2002b; Kise et al., 2004). stoichiometry and total number of components, at least nine
Human MRS represents another example. It is translocatalifferent ARSs, including both class | and class Il enzymes,
to the nucleus under proliferative conditions to augment rRNAave been consistently found in the mammalian complex:
synthesis in nucleoli, and the presence of MRS in nucleokEPRS, IRS, LRS, MRS, QRS, RRS, KRS and DRS. Among
depends on the integrity of rRNA and the activity of RNAthese, IRS, LRS, MRS, QRS and RRS are monomers, whereas
polymerase I. The addition of MRS stimulates rRNA synthesiSKRS and DRS are dimers. The largest component — EPRS —
which indicates that it plays a role in rRNA synthesis inharbors two catalytic activities in a single polypeptide. The
nucleoli, although the underlying mechanism is not clearl}complex also contains three auxiliary factors of p43, p38 and
understood (Ko et al., 2000). Human QRS is recruited t@18 (Quevillon and Mirande, 1996; Quevillon et al., 1997,
apoptosis signal-regulating kinase 1 (ASK1) to block its kinas@uevillon et al., 1999). The complex has been purified to
activity. The interaction of the two proteins is stimulated by thdhomogeneity from various mammalian tissues, including rat
QRS substrate, glutamine, which can suppress cell death (Kiger, rabbit liver and reticulocytes, sheep liver and spleen
et al., 2001a). Note that, in general, the non-canonical activitig8revet et al., 1982; Kellermann et al., 1982; Cirakoglu and
of ARSs appear to be more prevalent in mammalian system$Valler, 1985; Venema and Traugh, 1991), as well as from
cultured cells such as Chinese hamster ovary (CHO) cells
_ _ (Mirande et al., 1985b) and murine erythroleukemia cells
Mammalian multi-ARS complexes (Norcum, 1989). The complexes purified in these experiments
The activity of a protein is often controlled through formationdisplay very similar patterns following gel electrophoresis,
of transient or stable complexes with other proteins; thus;omprising 11 polypeptides with molecular weights from 18
understanding the molecular assembly and structurd&Da to 150 kDa (Kerjan et al., 1992; Kerjan et al., 1994).
organization of protein complexes helps us to determindlthough all of the enzymatic activities present can be assigned
the functions of their components. The formation ofto their corresponding polypeptides, with the exception of PRS
macromolecular complexes that function in DNA replication(Mirande et al., 1982; Cirakoglu and Waller, 1985), the
(Benkovic et al., 2001), transcription (Conaway et al., 1993%tructural organization of this complex has not yet been
and translation (Kerjan et al., 1994; Asano et al., 1997), signabmpletely deciphered.
transduction (Ramakrishnan and White, 1998) and protein Several approaches have probed the structural organization
degradation (Glickman et al., 1998) is well established, and waf this complex. Its components can be partially dissociated
know much about the regulation of the individual componentsunder a variety of conditions, such as repeated centrifugation
Several lines of evidence have suggested that the translatiomalthe presence of high concentrations of phosphate (Dang and
apparatus in mammalian cells is highly organized. In particulalyang, 1979), hydrophobic chromatography (Johnson et al.,
association of translational components such as tRNA, ARSK80) and incubation with chaotropic salts or detergents (Sihag
and elongation factors with the cytoskeletal framework (Dangnd Deutscher, 1983; Norcum, 1991). The gross morphology
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Fig. 1. Three-dimensional structure of CRS

the human multi-synthetase complex. p18 —& ARS e

(A) ‘Front’ view. (B) ‘Side’ view p3s +—& VRS

created by —90° rotation about the pa3 —

vertical axis. (C) ‘Top’ view created by Domain structure of other proteins

—90° rotation about the horizontal axis. )

The multi-synthetase complex was Alcip —& E. coll FRS(R). fiF—

isolated from cultured human cells and Topt11 EF-1% —

prepared for electron microscopy by E.coliMRS ——1 EF-Ty —

negatively staining with NanoVan

(Wolfe et al., 2003). The volume was B GST-homology domain

calculated from 8437 images, filtered ¥ Helical structure TRED : WHEP-TRS (M, G, H, W, EP) & DRS, KRS

to its resolution limit of 33 A and B 05 b srsiiors THRD  SAABY

presented at a threshold corresponding o o

to a particle mass of 1x20F Da. W Leucine zipper motif

Fig. 2. Functional domains in ARSs and ARS-related factors. The
domains hc_)mologous to_glutathioﬁeransferase (GST; red boxes)
of the complex has been explored by electron microscop§f shown in the N-terminal regions of MRS, EPRS and VRS, as
(Norcum, 1989; Norcum and Boisset, 2002; Wolfe et al., 200 ell as in the C-terminal regions of p18 and p38. p38 also contains a

(Fig. 1), and the nearest neighbors among the component pale[gcine zipper motif (violet box) and is involved in macromolecular

h b det ined by chemical linki N assembly of ARSs (Quevillon et al., 1999; Ahn et al., 2003). The
ave been determined by chemical crosslinking (Norcum a”ggquence similarity between the helical tRNA-binding domain (green

Warrington, 1998) and genetic approaches (Rho et al., 19985yes) of MRS, GRS, HRS, WRS and the three repeated domains of
Quevillon et al., 1999). EPRS was revealed by sequence alignment (Kaminska et al., 2001).
The complex-forming and non-complex-forming humaninterestingly, these motifs are also involved in protein-protein
ARSs do not display distinct size distributions, structurainteractions (Rho et al., 1996; Rho et al., 1998). DRS and KRS also
features, post-translational modifications, expression profilezontain helical tRNA-binding domains (TRBD; blue boxes),
or chromosomal locations (Table 2 and data not shownplthough they are not related to the motif mentioned above (Frugier
Moreover, comparison of functional motifs present in ARSse_te(‘J_-, Z(EOOOE;)Ffrallgﬂn etal, (Zt?IOZ)BBy C?r_ltraité thedOJ;%CgIUC'eOt:dte-d
provides few clues as to what is responsible for compleX%"9 old domains (DIU€ DOXES) IN P23 an are re:ate
. . : : (Renault et al., 2001). The similar RNA-binding OB folds can also
Igrma]:tlon. Intgrse_?_tlngly, domalr:s_ h?r:noll\cl)_%ous_to Iglut?thlqne Sbg _detected in some ARSs (human DRS, KRS and EBSyerichia
ansferase ( ) are present in the erminal extensions B; \rs and FR$-subunit) and other proteins (Arclp, Trbp111l,
MRS and EPRS (Quevillon and Mirande, 1996; Quevillon egg_15 and EF-3).
al., 1999) among the complex-forming enzymes, as well as the
C-terminal regions of p18 and p38 among the non-enzymatic
cofactors (Galani et al., 2001) (Fig. 2). Although these domainsontains the non-enzymatic factors p43, p38 and p18 (Fig. 2,
are also observed in other ARSs, such as mammalian VRS (Figg. 3A). Like ARSs, these ARS-associated factors also play
2) and the putative ERSs 8thizosaccharomyces pormdnad  diverse roles in processes other than protein synthesis. p43 is
Arabidopsis thaliana these enzymes are also likely to besecreted as an active cytokine (Kao et al., 1992; Knies et al.,
involved in different types of complex. Mammalian VRS is1998; Barnett et al., 2000; Ko et al., 2001b). The secreted p43
associated with elongation factor subunits that also contain thieduces synthesis of various pro-inflammatory cytokines and
GST homology domain (Bec et al., 1989; Bec et al., 1994chemokines, such as tumor necrosis factor (TéF)L-8,
Brandsma et al., 1995), and a CRS isoform can potentialljmonocyte chemotactic protein (MCP)-1, macrophage
associate with elongation factor subunits (Kim, J. E. et alipnflammatory protein (MIP)-1 and ILBLfrom monocytes (Ko
2000). In yeast, ERS forms a primitive complex with MRS ancet al., 2001a), as well as intercellular adhesion molecule
Arclp, and the importance of the GST-homology domain fo{[CAM)-1 (Park, H. et al., 2002). Synthesis of the latter
complex formation has been shown experimentally (Deinert giromotes cell adhesion in a variety of physiological and
al., 2001; Galani et al., 2001). Thus, the presence of the G$kthological processes, including inflammation and
domain might be a crucial determinant for complex formationatherosclerosis (Gimbrone et al., 1997).
p43 plays a complex role in angiogenesis. Although it
) o . induces migration of endothelial cells at low concentration, it
Multi-functionality of non-enzymatic components suppresses angiogenesis by blocking the proliferation and
As mentioned above, the human multi-ARS complex alsdriggering apoptosis of endothelial cells at high concentrations
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Table 2. Size and structural classification of human ARSs -

and chromosomal locations of their encoding genes ArsZ. / '~
Complex forms Size (aa) Class Chromosome location [ )g;ap,;; N oy N
DRS 500 I 2022.1 P .
KRS 597 I 16023-q24 & . el acig S .
RRS 660 [ 5935.1 b
QRS 775 [ 3p21.3-p21.1 LAs :
MRS 900 | 12q13.2 oo il
LRS 1176 [ 5q32
IRS 1262 [ 9g21
EPRS 1440 I 1g41-q42 A. Mammalian B. Yeast C. Archaea

Fig. 3. A schematic hypothetical model for the organization of

Free forms Size (aa) Class Chromosome location mammalian, yeast and archea tRNA synthetase complexes. (A) The
WRS 471 | 14932.31 two-dimensional arrangement of the components in the mammalian
FRS @) 508 I 19p13.2 multi-ARS synthetase complex. p38 is a scaffold protein for the

EE{% 6 Eé%% IIII 2q356.é-1q:§6.2 assembly of the components. Some of the interactions, which have
SRS 514 I 1p1g.3-b13.1 been determined by tw_o-h_ybrld analyses (Rho et al., 199(?‘; Quevillon
YRS 528 | 1p34.3 et al., 1999) and crosslinking methods (Norcum and Warrington,
NRS 548 I 18921.2-g21.3 1998), are shown as arrows in this diagram. Owing to the limits of
GRS 685 1l 7p15 two-dimensional display, some interactions are not shown. (B) The
TRS 712 I 5p13.2 yeast ARS complex consisting of two ARSs (MRS and ERS) and
CRS 831 I 11p15.5 Arclp, the yeast homolog of mammalian p43. Both ARSs interact
ARS 968 I 16922 directly with the N-terminal domain of Arc1p through their N-

VRS 1264 ' 6p21.3 terminal appended domains (Galani et al., 2001). (C) The putative

ARSs are classified into two groups (I and 1) depending on their structurap’]etabOIi(-:--prOtein Mj]-'338 copurified with PRS fr(Methanoco_ccus
features. The chromosomal locations of the ARS-encoding genes were JannaSCh“mtera.Cts W'th KRSs from human ‘."""““ha.mba?te”“m
obtained from LocusLink of the National Center for Biotechnology thermoautotro_plcurm pull-dO\_Nn assays. Its lnter'actlon W'_th DRS, .
Information. was also confirmed through identification of aminoacylation activity
in a DEAE fraction obtained from total cell lysatehdf jannaschii
(Lipman et al., 2000; Lipman et al., 2003). Although some
components in these complexes have the potential for
(Park, S. G. et al., 2002). p43 contains a caspase-cleavage sigmodimerization, for simplicity this is not shown. The spatial
which is targeted upon apoptosis; this releases the C-termirg{fangements and sizes of the components do not necessarily reflect
domain of p43 (previously known as EMAPII) from the their relative positions in the complexes.
complex. The process was thought to trigger the secretion of
the cytokine component from p43, causing the disintegration
of the multi-ARS complex to block protein synthesis. However(Goldgur and Safro, 1994)Methanococcus jannaschii
p43 processing does not appear to affect the function of ti{eipman et al., 2000; Lipman et al., 2003) é&atcharomyces
complex, and it turns out that the uncleaved form of the p43 iserevisiagSimos et al., 1996). In yeast, cytoplasmic MRS and
the active cytokine (Ko et al., 2001b). The role of proteolyticERS form a complex with Arclp — the yeast homolog of
cleavage of p43 at apoptosis is thus unclear at this point. mammalian p43 — through their N-terminal extensions (Galani
p38 also has an unexpected additional role. It can bind tet al., 2001) (Fig. 3B). Arclp binds preferentially to tRY¢A
FUSE-binding protein (FBP), a transcriptional activator of theand tRNACY, facilitating the delivery of the substrate tRNAs
gene encoding Myc, which promotes its ubiquitylation ando their cognate enzymes, although it has a general affinity for
proteasome-dependent degradation (Kim et al., 2003). Whexil tRNAs (Simos et al., 1996; Simos et al., 1998; Deinert et
the expression of endogenous p38 is abolished by insertion af, 2001). Although Arclp itself is not essential for yeast
a gene-trap vector in the p38-encoding gene, Myc isiability (Simos et al., 1996), it becomes crucial when its
overexpressed owing to the lack of p38-mediated suppressicathsence is combined with the depletion of Loslp, which is
which causes hyperproliferation of lung cells. The consequeimtvolved in the nuclear export of tRNAs (Grosshans et al.,
malfunction of the lung causes p38mice to die at birth, 2000b; Mucha, 2002). This indicates that Arclp is also
although they survive development through the prenatal stagievolved in nuclear transport of tRNA (Grosshans et al., 2000a;
It is not known yet whether the smallest cofactor, p18, is alsGrosshans et al., 2000b; Galani et al., 2001). However, whether
multi-functional. It shares limited sequence similarity with Arclp actually delivers nascent tRNAs from the nucleus to
elongation factor subunits (Quevillon and Mirande, 1996), thusytoplasmic ARSs has yet to be shown.
it could have a role connecting the aminoacylation and Trbplll, a homolog of Arclp, is present in the extreme
translational machineries. Considering the functional diversityhermophileAquifex aeolicugMorales et al., 1999) and binds
of the two other factors, it would not be surprising to find otheto single tRNA molecules as a dimer (Swairjo et al., 2000).
crucial activities of this factor. However, it is not yet known whether this protein forms any
specific complex with ARSs. Recently, Lipman et al. co-
purified a novel protein, Mj1338, with PRS from the archaeon
The evolution of ARS complexes M. jannaschii Mj1338 also has a general affinity for tRNA and
ARS complexes much less complex than the mammalian ortke potential to interact with KRS and DRS, in addition to PRS
may exist in lower organisms suchhaloarcula marismortui  (Lipman et al.,, 2000; Lipman et al., 2003) (Fig. 3C).
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Fig. 4. The three-dimensional structur ~ A. Trans-acting tRNA-binding OB folds B. Cis-acting helical tRNA-binding motifs
of trans- and cis-acting tRNA-binding :

domains present in ARSs and ARS- [ >'

associated factors. (A) The peptides

A147 to E314 of p43 (Kim, Y. et al.,
2000; Renault et al., 2001) and M1 tc
A111 of Trbp111 (Morales et al., 199
Two domains contain the typical
oligonucleotide-binding (OB) fold,
consisting of a five-strandgtbarrel 3

that is known to have RNA-binding p43-C Trbp111 EPRS repeats

capability. (B) The 57 aa peptide region

from D677 to P733 of human EPRS (Cahuzac et al., 2000; Jeong et al., 2000). Notice that the basic residues are expoteal fielinehe
arranged in anti-parallel mode.

Interestingly, it is predicted to be a metabolic protein relate@ pivotal role in the assembly of the multi-ARS complex. p38
to the members of the JHorming N° N!-methylene contains putative leucine zipper motifs (Quevillon et al., 1999;
tetrahydromethanopterin  (5,10-¢HisMP) dehydrogenase Ahn et al.,, 2003) (Fig. 2) and is involved in multiple
family, which catalyze an intermediate step in the C1 unitnteractions with different components within the multi-ARS
metabolism of the methanogen. complex (Fig. 3A). Deletion of p38 causes the complex to
p43 shares structural similarity with Trbpl1ll and othedisintegrate into individual components, which are then
tRNA-binding proteins present in lower organisms (Renault etlegraded, proving its crucial role in maintaining the structural
al., 2001), and is capable of binding to tRNA (Shalak et alintegrity of the whole complex (Kim et al., 2002). Although
2001) to help the tRNA dock onto the bound ARS (Park et althe importance of the other two factors in the complex
1999) (Fig. 4A). Clear homologs of p38 and p18 have not bediormation has not been evaluated, p43 and p18 are specifically
found in lower eukaryotes or bacteria. However, the C-terminddound to RRS and MRS, respectively (Park et al., 1999;
domains of p18 and p38 share significant sequence similariQuevillon et al., 1999). Analysis of the multi-ARS complex by
with the N-terminus of Arclp (Galani et al., 2001), whichelectron microscopy demonstrated that p43 is located centrally
might thus combine features of the three non-enzymatiwithin the complex, implicating it in the assembly of the
members of the mammalian complex. complex (Norcum and Warrington, 2000). Thus, p43 and p18
Interestingly, many ARSs also have cis-acting domains thahight be involved in the assembly of a subcomplex structure,
appear to facilitate the recruitment of tRNAs to their catalyticeven if they are not as crucial as p38.
sites (Cahuzac et al., 2000; Frugier et al., 2000; Kaminska et
al., 2001; Francin et al., 2002; Francin and Mirande, 2003). For ) )
example, the C-terminus &f coliMRS (Morales et al., 1999), The function of the multi-ARS complex
and the N-terminus of the. coli FRSB-subunit (Simos et al., Why do ARSs form a complex? Channeling is clearly one
1996) (Fig. 2) share structural similarity with the nonenzymatigossibility. Channeling has been suggested as an efficient way
factors in the mammalian ARS complex, and thus theyo utilize substrate for sequential reactions (Srere, 1987). For
probably function similarly to their trans-acting counterpartsexample, for sequential metabolic enzymes, stimulation of the
(Valenzuela and Schulman, 1986; Kim et al., 1993; Mosyak dirst enzyme induced by a protein-protein interaction with
al., 1995; Goldgur et al., 1997). It is thus likely that the transthe next provides a structural basis for channeling. The
acting tRNA-binding proteins derive from the ARSs (Fig. 2,supramolecular assemblies of ARSs and elongation factors
Fig. 4A) but have acquired more functional flexibility during (Mirande, 1991; Kisselev and Wolfson, 1994; Yang, 1996)
evolution. However, we cannot exclude the alternativeepresent structural evidence forthe subcellular organization of
possibility — that they were inserted into the ARS structure tthe protein synthesis machinery. Moreover, the existence of a
augment the catalytic efficiency of the enzymes. Some ARSzhanneled tRNA cycle during mammalian protein synthesis
also contain cis-acting motifs that are structurally unrelated tprovides functional evidence for cellular compartmentalization
the common domains found in Arclp, p43 and Trbpllbf translation (Negrutskii and Deutscher, 1991; Negrutskii et
(Cahuzac et al., 2000; Frugier et al., 2000; Kaminska et alal., 1994; Stapulionis and Deutscher, 1995). According to the
2001; Francin et al., 2002; Francin and Mirande, 2003) (Figproposed channeling scheme, aminoacyl-tRNAs are vectorially
2, 4). They usually form amphiphatic helices in which one sidéransferred from ARSs to ribosomes as ternary complexes of
of the helix displays an array of basic residues for interactiokF-10, GTP and aminoacyl-tRNA (Negrutskii and Deutscher,
with tRNAs (Fig. 4B). 1991; Stapulionis and Deutscher, 1995). The GDP-bound form
of EF-1a could be involved in the capture of deacylated tRNA
_ at the exit site of ribosomes and its delivery to ARSs
Assembly and disassembly of ARSs and cofactors (Petrushenko et al., 1997). Nascently produced tRNAs can also
In the mammalian multi-ARS complex, ARSs engage inbe delivered from the nucleus to ARSs for aminoacylation.
multiple interactions with each other, using their non-catalytic Components of the EF-1 complex could be attracted to the
and catalytic core domains (Rho et al., 1996; Rho et al., 1998harged tRNAs by their direct affinity for ARSs as well as
Rho et al., 1999; Kim, T. et al.,, 2000). These probablf{tRNAs (Sivaram and Deutscher, 1990; Negrutskii and
contribute to the stability of the complex in a cooperativeDeutscher, 1991; Negrutskii and Deutscher, 1992; Stapulionis
manner. However, studies show that ARS-binding factors havend Deutscher, 1995). ARSs such as DRS, FRS, LRS, HRS,
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Fig. 5. Three hypothetical models for dynamic movement of

Concerted Partial dissociation Static complex components. In the concerted model, all the
model model model components associate and dissociate simultaneously. In the
partial association/dissociation model, each component
pa—— associates or dissociates on an individual basis. In this case,
R 3 ] there would be several different subcomplexes. In the static

model, each component would be synthesized whenever
necessary for other activities. In this case, the complex
would be maintained stably once it is formed.

- rapid degradation further supports this idea (Kim et al.,
2 2002). Thus, their association to form a complex might
F] control the cellular turnover of ARSs.
t Last, complex formation might be used to control
non-canonical activities of the components. As already
Wil mentioned, several ARSs have additional functions
(Table 1). Similarly, two of the non-enzymatic factors,
p43 and p38, also play unique moonlighting roles.
Thus, cells must somehow control the dynamic
equilibrium between ARSs and cofactors used for
protein synthesis and those used for novel regulatory
EPRS, ARS, KRS and WRS have been observed to interaattivities. The multi-ARS complex may thus function as a
with subunits of EF-1H (Reed and Yang, 1994; Negrutskii emolecular reservoir for distribution of these enzymes and
al., 1996; Lee et al., 2002). The multi-ARS complex could thusofactors. Further work is clearly needed if we are to
generate a channel for the delivery of tRNAs (Calado et alunderstand the functions of this complex. Note that the roles
2002; Simos et al., 2002; Hopper and Phizicky, 2003). suggested above need not be mutually exclusive, and additional
Another complex, in which VRS is associated with the foufunctions are of course possible.
subunits of EF-1H, is also present (Bec et al., 1989; Bec et al.,
1994; Brandsma et al., 1995; Negrutskii et al., 1999; Galani et )
al., 2001). In this complex, the N-terminal extension of VRSThe dynamic balance of complex components
is bound to the EF-1H subunif$, { andd) that are responsible How are the diverse activities of components of the multi-ARS
for guanine nucleotide exchange. Careful kinetic analyses @bmplex physically regulated while they are tied together
the VRS EF-1H complex demonstrated that the catalytigvithin the complex? There are a few different possibilities
activity of VRS is enhanced about twofold by the addition of(Fig. 5). First is a ‘concerted association/dissociation model’,
thea subunit (Negrutskii et al., 1999). in which all of the components are associated and dissociated
A systematic trafficking network involving mammalian in a concerted manner. A second possibility is a ‘partial
ARSs and the translational machinery might thus exisassociation/dissociation model’, in which the components
(Negrutskii and Deutscher, 1991). Indeed, the primitivebehave independently and different subcomplexes exist,
complex consisting of Arclp, MRS and ERS found in yeastlepending on the conditions. Finally, there is the ‘static
provides supporting evidence for this model (Simos et algomplex model’, in which the complex is dynamically inert
1996; Simos et al., 1998). However, clustering of differenand each component is synthesized de novo whenever its
ARSs within a complex might not necessarily positively affectadditional functions are needed.
the flow of tRNAs. The macromolecular assembly might Protein-protein interactions can be regulated by post-
sterically hinder efficient movement of large tRNA substratestranslational modifications such as phosphorylation. There are
Thus, it will be interesting to see how ARSs are spatiallymany phosphorylation sites for different kinases in ARSs.
arranged within the complex so that different tRNAs can mov®amuni et al. have shown that the catalytic activities of the
into and out of their cognate catalytic cores without collidingcomplex-forming ARSs can be modulated by phosphorylation
Alternatively, complex formation might contribute to the in vivo and in vitro (Damuni et al., 1982). Five enzymes (DRS,
subcellular localization of ARSs. The ARS complex has bee@RS, ERS, MRS and KRS) are phosphorylated in
found in the nucleus (Nathanson and Deutscher, 2000), and tteticulocytes. QRS and DRS are selectively phosphorylated in
catalytic activities of the ARSs are thought to help theresponse to 8-bromo-cAMP (Pendergast et al., 1987), and
proofreading of newly synthesized nuclear tRNAs (Lund anddRS, ERS, MRS and KRS are phosphorylated in vitro
Dahlberg, 1998). Another function of the complex might be tdoy casein kinase | (Pendergast and Traugh, 1985).
control the cellular turnover of the components. The chaperorféghosphorylation by casein kinase | reduces the aminoacylation
Hsp90 facilitates assembly of multi-ARS complexes (Kang eactivity and alters the binding of the ARS complex to tRNA-
al., 2000). Blocking its activity suppresses the incorporatiorsepharose. Protein kinase C selectively phosphorylates QRS in
of nascent ARSs, which are subsequently degraded. Thiabbit reticulates stimulated by tumor-promoting phorbol
indicates that their association is required to protect thesters (Venema and Traugh, 1991). Phosphorylation by protein
components from degradation. The finding that dissociation dfinase C in vivo also inhibits aminoacylation activity.
the components by depletion of the p38 protein results in thelowever, no solid evidence is yet available that the assembly
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or disassembly of the multi-ARS complex is regulated byet al., 1999). In addition, the deletion of the GST-homology
phosphorylation (Pendergast et al., 1987). domain in the C-terminal region of p38 results in the
Since p38 is indispensable for the maintenance of the multdissociation of EPRS and MRS from the complex (Kim et al.,
ARS complex, it is unlikely that p38 embedded in the multi-2002).
ARS complex is dispatched to other sites, since this would Alternatively, these cofactors might have become linked to
destabilize the complex. To prevent a shortage of p38 in th&RSs for functional reasons. ARSs can be good sensors of
multi-ARS complex when it needs to be delivered to othecellular conditions because they use amino acids as their
target sites, the level of p38 should be dynamically regulatedeaction substrates. Interestingly, many ARSs can undergo
Indeed, the level of p38 is significantly increased byconformational changes following binding to amino acids
transforming growth factor (TGH); which generates (Kornelyuk et al., 1995; Onesti et al., 2000). In the case of
additional p38 that is not bound to the multi-ARS complexQRS, its anti-apoptotic interaction with ASK1 is stimulated by
(Kim et al., 2003). This fraction of p38 localizes to the nucleusthe increase in glutamine levels (Ko et al., 2001a). In addition,
as determined by cell fractionation and immunofluorescencthe concentration of charged/uncharged tRNAs is a crucial
staining to control Myc expression (Kim et al., 2003). Thus, atleterminant for protein synthesis (Rojiani et al., 1990;
least the ‘static model’ seems to apply to p38. Howeverimball, 2001). Therefore, these factors might monitor the
because p38 is the main switch for assembly of the complegpndition of the cell by being physically linked to ARSs, in
it can also be used to control complex formation. addition to enhancing the stability and catalytic capability of
As mentioned above, one of the complex-forming ARSSARSSs or controlling their cellular trafficking.
QRS, can bind to ASK1, and this interaction is enhanced by The evolutionary paradox in gene evolution is that higher
increases in the level of glutamine without changing the totagdukaryotic cells harbor much more DNA than necessary.
cellular level of QRS (Ko et al., 2001a). In this case, glutamin€onversely, the number of encoded proteins in these organisms
might control the dynamic equilibrium between QRS in theappears to be much smaller than we used to predict. How can
ARS complex and at its alternative target site. Perhaps QRSBis limited number of proteins meet the demand for functional
shuttles between the multi-ARS complex and ASK1diversity that highly differentiated multicellular organisms
depending on the conditions or glutamine concentration. Thesequire? Mammalian systems appear to take advantage of
observations favor the partial association/dissociation modetubcellular compartments, in which the same protein can be
Thus, different models appear to apply, depending on thelaced in a different physical environment or combined with a
component. different repertoire of proteins. Perhaps higher organisms have
evolved to maximize the safety and flexibility of genetic
) ) information by having extra DNA, yet economize by using one
Conclusions and perspectives protein for many different purposes. In this regard, the
The ARS-binding non-enzymatic cofactors seem to play amammalian ARSs and their associated factors provide a
crucial role in the assembly of multi-ARS complexes. Amondascinating example of such multi-functionality.
three mammalian ARS cofactors, p43 has relatives in
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