
Biochemical and Biophysical Research Communications 397 (2010) 100–105
Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate /ybbrc
Toll-like receptor 4-mediated c-Jun N-terminal kinase activation induces gp96
cell surface expression via AIMP1 phosphorylation

Gyuyoup Kim a, Jung Min Han a,b, Sunghoon Kim a,c,*

a Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
b Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
c Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University,
Suwon 443-270, Republic of Korea
a r t i c l e i n f o

Article history:
Received 7 May 2010
Available online 16 May 2010

Keywords:
gp96
AIMP1
TLR4
LPS
MyD88
JNK
0006-291X/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.bbrc.2010.05.075

* Corresponding author at: Center for Medicinal P
Biology, College of Pharmacy, Seoul National Universit
Korea. Fax: +82 2 875 2621.

E-mail address: sungkim@snu.ac.kr (S. Kim).
a b s t r a c t

The presentation of the endoplasmic reticulum resident chaperone protein, gp96 on the cell surface have
been considered as a phenomenon of the immunogenic process activation. Previously, we showed ami-
noacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) can form a molecular complex
with gp96, regulate the ER retention of gp96 through KDEL receptor, and suppress its cell surface expres-
sion. However, the physiological conditions that modulate AIMP1–gp96 interaction and cell surface
expression of gp96 are not known. In this study, we investigated the process that which can modulate
dissociation of AIMP1 and gp96 by using Toll-like receptor (TLR) activation. MyD88 pathway by LPS-med-
iated TLR4 activation induced the cell surface presentation of gp96 through c-Jun N-terminal kinase
(JNK). AIMP1 was phosphorylated by JNK upon LPS stimulation and gp96 was dissociated from phosphor-
ylated AIMP1. We further demonstrated that serine-140 residue of AIMP1 was phosphorylated by JNK
and alanine mutation of serine-140 suppressed LPS-induced cell surface expression of gp96. Altogether,
these results suggest that AIMP1 is phosphorylated by JNK through TLR-MyD88 pathway and lose the
regulatory activity for ER retention of gp96, resulting in the increase of cell surface expression of gp96,
and provide a new molecular mechanism underlying TLR-mediated gp96 regulation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Toll-like receptors (TLRs) have been studied as pattern-recogni-
tion receptors to defend against pathogen-associated molecular
patterns (PAMPS), the first barrier from microbes in innate immu-
nity [1]. There are at least 10 TLR families have been described in
murine [2], that recognize a broad spectrum range of PAMPS such
as lipids, lipopeptides, proteins, and nucleic acids [3]. TLRs are
type-1 transmembrane receptors, containing a ligand binding do-
main of leucine rich repeats and a cytoplasmic Toll/IL-1 receptor
(TIR) domain that interacts with TIR domain containing adaptor
molecules, of which there are five: MyD88, Mal, TRIF, TRAM, and
SARM [4]. MyD88 is utilized by all of the TLRs with the exception
of TLR3 [5]. Once recruited to the receptor, MyD88 lead a common
signaling pathway culminating in the activation of the nuclear fac-
tor jB (NFjB) and the mitogen-activated protein kinase p38 and
Jun N-terminal kinase (JNK) [6,7].
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Heat shock protein (HSP) gp96, or grp94 is an endoplasmic
reticulum (ER)-resident member of HSP90 family [8]. Like other
ER-resident proteins, gp96 contains a C-terminal KDEL sequence,
which is involved in retrograde transport from Golgi to ER. How-
ever, despite this KDEL sequence, cell surface gp96 presentation
has been demonstrated on mouse Meth-A sarcomas but not on
normal embryonic fibroblasts [9]. In addition, it has been reported
that gp96 is expressed on murine thymocytes [10], which indicates
that cell surface gp96 expression is not restricted to tumor cells.
Also, gp96 has been implicated in the activation or maturation of
dendritic cells (DCs) [11]. Proinflammatory cytokine secretion
[12] and MHC class I/II up-regulation [13] can be induced by direct
interaction between gp96 and DCs via CD91 [14] and TLR2/TLR4
[12] resulted in DC maturation. These reports support that extra-
cellular gp96 is involved in innate and adaptive immunity [15].
In a transgenic mouse model 96tm-Tg, enforced cell surface
expression of gp96 induced significant DC activations and showed
spontaneous systemic lupus erythematosus (SLE)-like autoim-
mune phenotypes [16]. In addition, gp96 is increased in synovial
fluid from the joints of rheumatoid arthritis (RA) patients and acti-
vates macrophages that promote the chronic inflammation of RA
[17]. Recently, we have shown that in vivo administration of the
chemical compound reduces SLE-like phenotypes in 96tm-TG mice
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via ER retention of gp96 [18]. Thus, uncontrolled gp96 cell surface
expression leads to the breakdown of immunologic tolerance with
autoimmune disease-like pathological states.

AIMP1 (also known as p43) was identified as one of three aux-
iliary factors of mammalian multi-ARS complex [19]. AIMP1 binds
and helps the catalytic reaction of arginyl-tRNA synthetase [20].
AIMP1 is also involved in diverse physiological processes [21], like
a cytokine activity on monocytes [22–24], endothelial cells [25],
fibroblasts [26], and even a glucagons-like hormonal activity
[27]. Recently, we found that AIMP1 physically interacts with
gp96 and controls ER retention of gp96, preventing its extracellular
presentation [28]. In addition, AIMP1-deficient mice showed the
increased levels of gp96 on the cell surface, thereby displaying
the phenotypes similar to those of gp96 transgenic mice [28].
Although all of these previous studies demonstrated the impor-
tance of the ER retention of gp96 for immune tolerance, it is not
yet determined which pathway controls the dissociation of gp96
from AIMP1 and localization of gp96 on the cell surface. To address
this question, we first confirmed the innate immune activation via
TLR4 can induce the surface expression of gp96, and then investi-
gated the dissociation mechanism between gp96 and AIMP1 in the
activation of TLR4 signal pathway.

2. Materials and methods

2.1. Cells and vectors

HL-60 cells was grown in RPMI 1640 medium with supplement-
ing 10% FBS and antibiotics. Mouse splenocytes were isolated from
pathogen-free 12-week-old mouse (C57BL/B6) [28]. Dominant neg-
ative mutant of JNK was the kind gift of Dr. D. Levens (National
Institutes of Health, USA). AIMP1 point mutants were made by
using site-directed mutagenesis Kit (Invitrogen) with specific
primers: S140A-(forward), 50-AGAAGGAGAAAAAACAGCAAGCAA-
TAGCTGGAAG-30; S140D-(forward), 50-AGAAGGAGAAAAAACAG
CAAGACATAGCTGGAAGTGCC-30; S140-(reverse), 50-TTGCTGTTTT
TTCTCCTTCTTCTCTCCTTTC-30; S153A-(forward), 50-ACTCTAAGC
CAATAGATGTTGCCCGTCTGGATCT-30; S153D-(forward), 50-ACT-
CTAAGCCAATAGATGTTGACCGTCTGGATCTTCGA-30; S153-(reverse),
50-AACATCTATTGGCTTAGAGTCGGCACTTCCA-30; T 287A-(forward),
50-CTAATGATGAGTGTGTGGCTGCATACAAAGGAGT-30; T 287-(re-
verse), 50-AGCCACACACTCATCATTAGTGTGAAGATC-30. Transfection
was performed by using electroporator (INCYTO).

2.2. Antibodies and reagents

TLR2, TLR4, TLR9, MyD88, c-Myc (9E10), HA, and phosphor-ser-
ine antibodies were purchased from Santa Cruz Biotechnology.
gp96 antibody was from Stressgen. Heat-killed Escherichia coli
(XL1-blue strain) were prepared by boiling for 30 min. LPS (from
E. coli, O127: B8) was purchased from Sigma–Aldrich. All other TLR
agonists were obtained from InvivoGen. SB203580, PD98059, and
SP600125 were from Calbiochem. Recombinant JNK and c-Jun were
from Millipore and Cell Signaling Technology, respectively.
2.3. Flow cytometry

Surface gp96 staining of cells and flow cytometry were per-
formed as described in [28]. Collected cells were washed with 1�
PBS, and resuspended in FACS buffer (1� PBS containing 2% FBS,
and 1% BSA) for 30 min. After then, cells were stained with mono-
clonal gp96-phycoerythrin conjugated antibody (Assay Designs)
for 30 min and washed with 1� PBS for three times. Cells were
analysed on a FACScan flow cytometry using CellQuest software
(Becton Dickinson Biosciences).
2.4. Transfection of small interfering RNAs (siRNA)

Endogenous TLR family or AIMP1 were depleted using siRNA
transfection method. For each transfection, HL-60 suspension con-
taining 8 � 105 cells in 500 lL of RPMI 1640 with 10% FBS but
without antibiotics, were added to a well of a 24 well plate, and
cells were transfected with siRNA duplexes (final concentration,
50 nmol/L) using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s protocol. Pre-designed siRNAs (Invitrogen)
were 25-nucleotide duplexes and had the following sequences:
TLR2, 50-UUCAGAGUGAGCAAAGUCUCUCCGG-30; TLR4, 50-UUCAA-
CUUCCACCAAGAGCUGCCUC-30; TLR9, 50-AGUAUUUGCAGGGCA-
CUCGCCAGGG-30; AIMP1, 50-GGAGCUGAAUCCUAAGAAGAAGA
UU-30. MyD88–siRNA containing a pool of four target-specific
20–25 nucleotides was purchased from Santa Cruz Biotechnology.

2.5. Recombinant AIMP1 mutant purification

AIMP1 wild-type and all other mutants were sub-cloned into
pET 28a vector (Novagen). His-tagged proteins were expressed in
Rosetta (DE3) E. coli strain (Novagen), purified by nickel affinity
chromatography as described previously [20].

2.6. Two-dimensional electrophoresis

2D samples were prepared by solubilizing in 2D-lysis buffer
(7 M urea, 2 M thiourea, 2% w/v CHAPS, 2% w/v ASB-14, and
2 mM tributylphosphine), loaded onto the immobilized pH gradi-
ent (IPG) strip gels (linear pH gradient 7–10, 7 cm), and focused
with PROTEAN isoelectric focusing cell (Bio-Rad). After equilibra-
tion with 375 mM Tris–HCl (pH 8.8), 6 M urea, 2% SDS, 20% glyc-
erol, 2% DTT, and 2.5% iodoacetamide, the IPG strips were
embedded on top of 10% SDS–PAGE gels, sealed with 1% agarose,
and electrophoresed.

2.7. Binding assay

For immunoprecipitation, the cell was solubilized with lysis buf-
fer (25 mM Tris–HCl, pH 7.4, 10 mM NaCl, 10% glycerol, 1 mM EDTA,
0.5% Triton X-100, 2 mM DTT, and 1 mM PMSF with protease inhib-
itor cocktail). Extracted proteins were mixed with gp96 antibody
(Santa Cruz Biotechnology) pre-bound with protein A/G agarose
for 2 h, and non-specific proteins were washed out with lysis buffer.
The proteins were denatured by boiling after adding 5� sample buf-
fer, and then subjected to SDS–PAGE for Western-blot analysis with
AIMP1 antibody. To address that the interaction of AIMP1 and gp96
could be affected by AIMP1 phosphorylation, the cell lysate was
treated with phosphatase, then incubated with recombinant GST–
gp96 protein [28], and immunoprecipitated with AIMP1 antibody.

2.8. JNK in vitro kinase assay

Recombinant JNK1 protein was mixed in kinase buffer (25 mM
Tris–HCl, pH 7.5, 10 mM MgCl2, 5 mM b-glycerophosphate, 2 mM
DTT, 0.2 mM ATP, and 0.1 mM Na3VO4 with protease inhibitor
cocktail) and combined with 10 lCi of [c-32P] ATP, 5 lg recombi-
nant AIMP1 mutant. The reaction was incubated for 30 min at
30 �C, terminated by adding 5� SDS sample buffer and boiled to
denature samples for SDS–PAGE. The phosphorylated AIMP1 and
c-Jun (as positive control) were determined by autoradiography
of the dried blot.

2.9. Statistical analysis

The Student’s t-test was used for statistical analysis. P values of
<0.05 were considered to represent statistically significant
differences.
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3. Results

3.1. TLR activation induces the cell surface gp96 expression

To address the immunogenic function of cell surface expressing
gp96, we treated an innate immunogenic trigger; Gram negative
bacteria (heat-killed E. coli) to the monocyte cell line (HL-60) and
mouse primary splenocyte for 24 h and analysed cell surface
expressed gp96 by using flow cytometry. As a result, when the
HL-60 was treated with E. coli, cell surface expression of gp96 sig-
nificantly increased. In addition, isolated splenocytes from mouse
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Fig. 1. Cell surface gp96 induction by TLR activation. (A) Heat-killed E. coli treated for
stained for cell surface gp96, followed by flow cytometry analysis. HL-60 cells were treate
surface gp96, followed by flow cytometry analysis (*P = 0.0002). (D) To investigate the ce
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line) or not treated (dotted line), and stained for cell surface gp96, followed by flow cytom
Data represent the means ± SD.
also express the gp96 on the cell surface in response to E. coli treat-
ment (Fig. 1A). To investigate whether the immune response by
E. coli that increased cell surface gp96 is by TLR activation, we trea-
ted purified-LPS instead of E. coli on HL-60. The cell surface gp96
was increased by LPS in dose-dependent manner (Fig. 1B and C).

Since LPS is known as an activator for TLR4 in innate immunity,
we examined other TLR agonists can induces cell surface gp96
expression. Most TLRs activation showed no increase of gp96 on
cell surface, except TLR4 and TLR7 (Fig. 1D). Interestingly, activa-
tion of endosomal TLR9 showed clearance of gp96 on the cell sur-
face. The reason why TLR9 activation suppresses cell surface
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expression of gp96 needs further investigation. Despite all kinds of
TLRs commonly used the MyD88 as an adaptor molecule with an
exception of TLR3, LPS and Imiquimod significantly increase the
cell surface gp96 expression through TLR4 and TLR7, respectively.
To investigate the gp96 localization dependent on the MyD88 re-
lated pathway obviously, we used TLR4 model in the following
experiments.

To confirm that LPS-induced cell surface expression of gp96 is
dependent on the TLR activation and not by other effect, TLR2,
TLR4, and TLR9 genes were depleted by using each siRNAs before
cells were treated with LPS, and monitored the surface levels of
gp96 by using flow cytometry. When TLR4 was depleted, the cell
surface gp96 was not increased by LPS, but in the case of TLR2
and TLR9 knockdown showed the increase of gp96 on the cell sur-
face by LPS in the same manner with si-control (Fig. 1E and F). In
addition to this result, most TLR’s common adaptor molecule,
MyD88 knockdown also showed similar phenomenon of TLR4.
Therefore, we supposed that MyD88 pathway through TLR activa-
tion is important to determine the cell surface gp96 localization.

3.2. JNK activation is related to the expression of gp96 on the cell
surface

MyD88 stimulation by LPS leads TRAF6 downstream pathway
activation including p38MAPK, ERK, and JNK [7]. To address the
involvement of these kinases on the gp96 localization, cells were
pre-treated with each kinase inhibitor (10 lM) and then treated
with LPS for 24 h. It was observed that SP600125 inhibited the cell
surface gp96 expression, but other inhibitors did not (Fig. 2A and
B). To determine the relationship with JNK activation and gp96
presentation on the cell surface more detail, we obtained domi-
nant-negative JNK expression, and then we found that the LPS-in-
duced cell surface expression of gp96 was inhibited (Fig. 2C).
Therefore, these results suggest that innate immunogenic environ-
ment such as LPS induce the expression of gp96 on the cell surface
through JNK activation.

3.3. AIMP1 phosphorylation by JNK induces AIMP1–gp96 dissociation

Previously, we found that AIMP1 associated with gp96 in the
ER, to prevent cell surface export of gp96 [28]. The gp96-binding
region of AIMP1 (amino acids 54–192) contains lysine-rich se-
quences and the C-terminal dimerization domain of gp96 contains
glutamate-rich sequences. In this reason, we supposed this interac-
tion is due to the charge–charge interaction. The post-translational
modification such as phosphorylation can change the charge of
protein, thus we investigated that TLR trigger could phosphorylate
AIMP1. AIMP1 extracted from the control and LPS-treated cells
were separated by 2D gel electrophoresis. Although AIMP1 of the
control cells was detected mainly as a single spot, a few additional
spots were generated in the more acidic region upon LPS treat-
ment, but disappeared upon LPS with JNK inhibitor treatment
(Fig. 3A), indicating that AIMP1 is phosphorylated by TLR4 activa-
tion. Consistently, in vitro binding assay showed that serine residue
of AIMP1 was phosphorylated (Fig. 3B) by LPS but the phosphory-
lation of threonine residue was not observed (data not shown).
Furthermore, the GST-fused gp96 was detected upon alkaline
phosphatase treatment, but reduced on the control (Fig. 3B), indi-
cating that TLR4 activation release gp96 from AIMP1 by serine res-
idue specific phosphorylation on AIMP1.

To determine the binding of AIMP1 and gp96 is altered by TLR4
activation, LPS-treated cell lysates were immunoprecipitated with
anti-gp96 antibody, and blotted with anti-AIMP1 antibody.
Although AIMP1 of the control cell was immunoprecipitated with
gp96, it was disappeared upon LPS treatment (Fig. 3C and D). How-
ever, the dissociation of AIMP1 and gp96 by TLR4 activation was
blocked on the dominant-negative JNK overexpression (Fig. 3D),
correlated with the result that cell surface expression of gp96
(Fig. 2C). These results suggest that AIMP1 could be phosphory-
lated by activation of JNK pathway on TLR4 signaling.

3.4. Phosphorylation of AIMP1 serine-140 regulates cell surface
expression of gp96

To address which residue of AIMP1 could be phosphorylated by
JNK activation, we searched the possible site by structural model-
ing, and collected a few candidates among those lists by stand on
the gp96-binding region. Candidates (from Ser to Ala or Asp) were
expressed on the cell, and treated with LPS. Myc-tagged AIMP1
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were separated by 2D gel electrophoresis. Overexpressed AIMP1
was responded to LPS treatment and additional spots were de-
tected in the acidic region, with the exception of S140A mutant
(Fig. 4A). To evaluate that JNK could phosphorylate AIMP1 directly,
in vitro kinase assay was performed by using bacterial expressed
recombinant proteins. In our system, AIMP1 could be phosphory-
lated by JNK, indicating that AIMP1 is one of the substrate for
JNK. JNK could not phosphorylated the S140A mutant, but other
candidate S153A could be phosphorylated (Fig. 4B). Furthermore,
the surface gp96 was not responsible on S140A mutant to LPS,
while S140D mutant showed highly expressed surface gp96 either
treated with LPS or not (Fig. 4C). These results show that the induc-
tion of surface gp96 by LPS or innate immune trigger is due to the
gp96 dissociation from the phosphorylated AIMP1 at serine-140
residue by JNK activation that was stimulated by TLR/MyD88 sig-
nal pathway.

4. Discussion

This study demonstrates the molecular mechanism of gp96 sur-
face localization responding to innate immune trigger. TLR4 signal-
ing by LPS leads JNK activation through MyD88-dependent
pathway, resulting in AIMP1 phosphorylation. This leads collapse
of AIMP1–gp96 complex and surface presentation of gp96 through
ER–Golgi pathway. The gp96-binding region of AIMP1 has positive
charge by lysine-rich sequences and the AIMP1-binding region of
gp96 has negative charge by glutamate-rich sequences. Therefore,
the association between AIMP1 and gp96 may be due to the
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charge–charge interaction. Through JNK-mediated phosphoryla-
tion, AIMP1 gets negative charge within gp96-binding region,
resulting in reduced binding between AIMP1 and gp96.

LPS was the most potent agent for cell surface expression of
gp96 among the TLR agonists on the HL-60 cell (Fig. 1D). All TLRs
utilize the adaptor molecule MyD88 commonly, with the exception
of TLR3. Despite MyD88 lead a common signal pathway, individual
TLR family members induce different signaling pathway by
assembling of other adaptor molecules of kinases [29]. In this rea-
son, we supposed that the surface gp96 was decreased or not chan-
ged on the other agonist-treated cells than control. Unexpectedly,
TLR9 agonist ODN2006 eliminated the surface gp96 completely
(Fig. 1D). Related with this phenomenon, it was reported that the
proportion of B cells and monocytes expressing TLR9 is increased
in SLE patients [30]. It may be supposed that both TLR9 activation
and surface gp96 expression cause chronic inflammatory response,
culminating SLE-like diseases, there are maybe a negative feedback
each other to avoid unnecessary activation.

Although HSPs have been implicated as endogenous activators
for DCs, chronic or uncontrolled expression of gp96 on the cell sur-
face induces significant DC activation and spontaneous SLE-like
autoimmune phenotypes in mice [16,28]. gp96 is increased in
synovial fluid from the joints of human rheumatoid arthritis pa-
tients and the expression of gp96 shows a correlation with inflam-
mation and synovial lining thickness, further supporting the
pathological association of gp96 with autoimmune diseases [17].
These results indicate that gp96 is a potential new therapeutic tar-
get, and previously we screened and identified a gp96-binding
chemical that suppresses surface translocation of gp96. In mice,
maturation of DCs, populations of APCs, and activated B and T cells
were significantly reduced by administration of the candidate
compound [18]. The compound also alleviated the SLE-like symp-
toms. Thus, the control of gp96 localization is very important event
for maintaining the immune tolerance.

In summary, we demonstrate that LPS induces the dissociation
of gp96 from AIMP1 by phosphorylation through TLR4/MyD88-
mediated JNK activation, resulting in translocation of gp96 on the
cell surface.
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