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Abstract

Aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multifunctional proteins (AIMPs) exhibit remarkable functional
versatility beyond their catalytic activities in protein synthesis. Their non-canonical functions have been pathologically
linked to cancers. Here we described our integrative genome-wide analysis of ARSs to show cancer-associated activities in
glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor. We first selected 23 ARS/AIMPs
(together referred to as ARSN), 124 cancer-associated druggable target genes (DTGs) and 404 protein-protein interactors
(PPIs) of ARSs using NCI’s cancer gene index. 254 GBM affymetrix microarray data in The Cancer Genome Atlas (TCGA) were
used to identify the probe sets whose expression were most strongly correlated with survival (Kaplan-Meier plots versus
survival times, log-rank t-test ,0.05). The analysis identified 122 probe sets as survival signatures, including 5 of ARSN
(VARS, QARS, CARS, NARS, FARS), and 115 of DTGs and PPIs (PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2, KRT10,
MED12, etc). Of note, 61 survival-related probes were differentially expressed in three different prognosis subgroups in GBM
patients and showed correlation with established prognosis markers such as age and phenotypic molecular signatures.
CARS and FARS also showed significantly higher association with different molecular networks in GBM patients. Taken
together, our findings demonstrate evidence for an ARSN biology-dominant contribution in the biology of GBM.
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Introduction

Mammalian aminoacyl-tRNA synthetases (ARSs) and ARS-

interacting multifunctional proteins (AIMPs) carry out the first

step of protein synthesis by catalyzing the ligation of amino

acids to their cognate tRNAs. However, they also contain other

domains unrelated to catalytic activities to form diverse

complexes with each other or with other cellular regulatory

factors. This structural complexity seems to be linked to

a functional versatility, and their expanded functions have been

implicated in a variety of human diseases including cancers [1].

Several ARSs have been shown to be abnormally up- or down-

regulated in hepatomas, colon cancer, Burkett’s lymphoma,

prostate adenocarcinoma, breast cancer, sarcoma, colorectal

adenocarcinoma and pituitary adenoma [2–5]. In addition, the

functional regulation of cell growth, differentiation, RNA

splicing, cytokine activities, and angiogenesis by ARSs in

various disease states such as breast cancer, colon cancer,

prostate cancer, and renal cell cancer has been studied [6–10].

Overexpression of MRS was also reported in malignant fibrous

histiocytomas, sarcomas, malignant gliomas and glioblastomas

[1]. These tumors have amplification of the chromosome 12q13

locus, where the gene for MRS overlaps with the gene for

CHOP, which functions as an inhibitor of C/EBP12. This

amplification probably results in the overexpression of MRS and

CHOP, which may promote a favorable milieu for tumor

progression [11]. However, despite that ARSs have been linked

to human cancers, their biological significance is still not

completely understood.

Here we described our integrative genome-wide analysis of

ARSs to show cancer-associated regulatory activities with an

emphasis on glioblastoma multiforme (GBM) [12] using NCI’s

cancer gene index (CGI) [13] and The Cancer Genome Atlas

(TCGA) database [14]. First, we selected 23 ARS/AIMPs

(ARSN), 124 cancer-associated druggable target geneset (DTG)

and 404 protein-protein interactors (PPIs) of ARSs. Then, we

assigned each of the geneset to several prognostic molecular

signatures of GBM (GEO accession #GSE4271) including

proneural (PN), proliferative (Prolif) and mesenchymal (Mes)

[15] and identified survival-related genes that are differentially

expressed among samples in each subtype compared to other

subtypes. We showed several candidates that are more likely to

interact with aminoacyl-tRNA synthetase and their different

involvement in each specific subtype. Thus, our study suggests

potential contribution of ARSs with their PPI gene sets on the

phenotype of GBM.
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Results

ARSN Shows Potentially Association with Cancers
through Interactions with DTGs
To examine the potential association of ARS family with cancer

at a systemic level, we compared the expression profiles of the

genes encoding the 20 human cytoplasmic ARSs and AIMP1–3

(AIMPs) with those of known DTGs obtained from the US

National Cancer Institute’s cancer gene index (CGI). Detailed

analysis procedures are outlined in Figure 1. We selected 124

DTGs that can interact with 23 ARS/AIMPs, and 404 genes as

protein-protein interactors of ARSs. For the comparison, we also

selected 1874 non-cancer-associated genes (nonCAGs) (each

geneset is detailed in Table S1). In the first example from the

CGI, the genesets were used to show cancer-associated regulatory

activities with Cytoscape. We categorized the data into ten cancer

groups (brain, colon, kidney, cervix, haematopoietic and lym-

phoid, liver, prostate, lung, breast, and gastric cancer).

Using the cancer-associated interactions between ARSs and

AIMPs, and three genesets, as expected, a large number of the line

based on the node of ARSN-DTGs indicates higher association

between ARSN and DTGs than ARSN-PPIs (Figures S1, S2, S3,

S4). A cancer-association map was also established to display how

much ARSs and AIMPs could be differently interacted to ten

different cancers (Figures S5, S6, S7, S8, S9, S10, S11, S12, S13,

S14). Four large cancer sets connected to components of the

cancer association interaction network were shown in Figure 2.

The cancer node size indicates the number of interactions with the

brown node gene. Among the components of ARSN, relatively

higher cancer-associated network was shown by GARS, MARS,

WARS, RARS, CARS, AIMP1 (SCYE1) and AIMP3 (EEF1E1)

(green nodes). Also, AIMP1, MARS, and RARS have relatively

higher association with cancers, indicating their potential impor-

tance in cancer biology and the needs of pathological mechanistic

studies.

Figure 1. Outline of analysis procedures with each geneset showing the general steps required to identify genes that modulate
a specific phenotype: selection of genes with the desired phenotype, and identification of phenotype-inducing ARSN and
corresponding cancer-associated druggable target genes.
doi:10.1371/journal.pone.0040960.g001
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Correlation Map Signatures Define ARSN Subclasses of
Glioblastoma
For cancer-associated systematic analyses of ARSs and AIMPs,

we applied the genesets to the 254 GBM affymetrix U133plus2

microarray dataset in the TCGA. In this dataset, we identified 846

resulting probe sets including 168 DTGs and 678 PPIs that can

directly interact with ARSs and AIMP1–3. For comparison, we

also selected 978 probe sets among 1874 nonCAGs (each probeset

is detailed in Table S2). To understand ARSN interactions with

each DTGs/PPIs/nonCAGs and visualize the relationship

between the genesets, a correlation map was made. First, the

DTGs probeset was clustered on the basis of Pearson correlation

coefficients that related their expression patterns across the 254

GBM tissues to the expression patterns of ARSN over the same

tissue set, as shown in Figure 3a. We then clustered PPIs and

nonCAGs on the basis of these correlation coefficients. In this

analysis, a red color indicates that two genes tend to be up or

down-regulated together (positively); a blue color indicates the

opposite tendency (negatively). The clustered map of the geneset-

geneset correlation showed a relatively positive or negative

correlation between two gene sets. For the three interaction sets

in which the correlation coefficient rule for more than 0.4

performed significantly, we investigated the frequency of more

than 0.4 to determine if any set had relatively high frequencies of

significant correlation. The frequency histograms was shown in

Figure S15. For the ARSN-DTG set, the correlation coefficient

more than 0.4 had a relatively high frequency of 0.35% versus

0.51% of the ARSN-PPI. For the ARSN-nonCAG set, a relatively

low frequency of 0.09% was shown. Also, the differences in the

median values among the sets are statistically significant (P,0.001,

one-way ANOVA).

To clearly understand molecular interactions of each geneset,

we performed supervised hierarchical clustering analyses using the

map, showing that three clusters lead to a low false discovery rate

(FDR ,0.005), thus appears to provide significant interactive

specificities of each cluster (Figure 3b). ARSN were shared by

three groups. The first ARSN subgroup appears to be closely

related to DTGs. We identified that several ARSN such as WARS,

RARS, and AIMP1 showed a highly significant association with

31 DTG genes (Table S3) (positive association with 21 DTGs and

Figure 2. Cancer-associated interactions between 23 ARSs and AIMPs, and three genesets. 3501 genes were selected by manual curation,
clinical examination and causal relationship to cancer. Using 11 public database showing the curated interactions of human proteins (HPRD, BioGRID,
KEGG, Reactome, BIND, MINT, IntAct, InnateDB, DIP, STRING, and PharmDB), we further selected 124 DTGs and 404 genes as PPIs of ARSs. Using
a cancer-associated interactions analysis, a cancer-association map was established to display how much ARSs and AIMPs could be differently
interacted to ten different cancers. Each brown node indicates each gene of respective cancer and each node size indicates the degree of cancer-
dependent co-association of a gene. Line indicates the co-association between ten cancers and seven ARSN. The cancer node size indicates the
number of interactions with the brown node gene. Seven components of ARSN (green nodes) show relatively higher cancer-associated network.
doi:10.1371/journal.pone.0040960.g002
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negative association with 10 DTGs), suggesting their potential

contribution to the GBM biology. The second subgroup includes

11 ARSN (EPRS, VARS, NARS, LARS, FARS, KARS, YARS,

MARS, AIMP3, and AIMP2) and showed reversed biological

functions with 31 DTGs compared to the first group. However,

the third group including 9 ARSN (AARS, DARS, SARS, GARS,

IARS, TARS, QARS, HARS, and CARS) showed relatively low

correlation coefficients. Current microarray data clustering

methods are limited to linear association between individual gene

expression values and phenotype. To understand nonlinear

associations between gene expression and phenotype that may

not be linear associations, we used a quantitative (numeric) trait

analysis in which we could make relationships based on nonlinear

association between two gene expression sets. This method is

a useful tool for detecting gene classes correlated with a quantita-

tive trait and to explore the patterns of gene-class association. In

this analysis, 16 DTGs (Table S4) were correlated with three

subgroups of ARSN (Figure 3c, P,0.05). The results of two

association methods showed the same number of cluster with the

similar trends of the associations. 9 DTGs (UBE2I, KRAS,

MARCKS, NFKB1, NR3C1, TP53, VKORC1, YY1, and HLA–

B) were overlapped for the linear and nonlinear associations. On

the other hand, 4 genes (NF1, CYP1A2, TGFB2, and CTGF)

were not detected as differentially interacted with ARSN by the

linear association method. However, we couldn’t show if the

nonlinear profiles reflect the general trends of the associations, so

further studies are needed. A comparative analysis of the

association pattern between the PPIs and the individual ARSN

was shown in Figure S16 and S17. In this case, ARSN were shared

by two groups, showing a highly positive and negative association

with 119 PPI genes. But it showed a low false discovery rate (FDR

,0.014, thus appears to provide weak interactive specificities of

Figure 3. Correlation patterns of 23 ARSs and AIMPs to three different genesets. (a) We identified 846 resulting probe sets including 168
DTGs and 678 PPIs that can directly interact with ARSN using 254 GBM affymetrix U133plus2 microarray dataset in TCGA. For the comparison, we also
selected 978 probe sets among 1874 nonCAGs. To understand ARSN-DTGs/PPIs/nonCAGs interactions and visualize the relationship between
genesets, a correlation map was made on the basis of their correlation levels with each set. The probe sets are presented in matrix format, where
rows represent individual genes of DTGs, PPIs, and nonCAGs, respectively, and columns represent each gene of ARSN. Each cell in the matrix
represents the correlation level of a gene in an ARSN. Red color indicates that the gene tends to be up or down-regulated together; Blue color
indicates the opposite tendency (The darker, the stronger the association between two genes). (b) Hierarchical clustering analysis showed that ARSN
were shared by three groups with 31 DTGs (FDR ,0.005). 31 DTGs were generated on a supervised hierarchical clustering analysis. (c) Hierarchical
clustering of ARSN based on the 16 DTGs based on nonlinear association between two gene expression sets. 16 DTGs were correlated with three
subgroups of ARSN.
doi:10.1371/journal.pone.0040960.g003
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PPI as compared to DTGs. The nonlinear association analysis also

showed two groups of ARSN having a highly significant

association with 117 PPI genes. Taken together, these results

indicated that ARSNs suggest possible mechanisms and processes

involved in the DTGs regulation.

ARSN Expression and Correlation with Survival in Patients
with GBM
To identify gene expression patterns that classify GBM tumors

into ARSN biology-dominant groups, we used 846 probe sets as

described previously. We first identified probe sets whose

expression most strongly correlated with survival (Kaplan-Meier

plots versus survival times, log-rank t-test ,0.05). This analysis

identified that 122 resulting probe sets of ARSN (VARS, QARS,

CARS, NARS, FARS), DTGs (PDE4A, NF1, NBN, CETP,

SMAD3, HIST3H2A, TFRC, PTPRC, MTAP, etc), and PPIs

(PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2,

KRT10, MED12, etc) that were correlated with survival in

patients with GBM (Table S5). The effect of several genes

expressions on survival was shown in Figures S18, S19, S20. Then,

we performed a supervised clustering with the 122 probesets and

GBM samples (GEO accession #GSE4271) showing well-known

glioblastoma subtypes such as Proneural (PN; median survival of

the PN subclass is 174.5 weeks), Proliferative (Prolif; 60.5 weeks)

and Mesenchymal (Mes; 65.0 weeks) [15]. As shown in Figure 4a,

this analysis showed that 61 probe sets among 122 probe sets were

differentially expressed in the three discrete subgroups based on

the statistical cut-off (P = 0.01), including CARS and FARS, and

59 probe sets (Table S6). Using 61 probeset as a signature, the PN

subtype showed a dominant feature of expression pattern of the

gene sets compared to Prolif and Mes subtypes, suggesting

consistent prediction patterns by a 61 probe set expression

signature. To determine whether CARS and FARS contribute

to differences in biological characteristics of GBM tumors, we

examined expression of two ARSs. As shown in Figure 4b, CARS

was overexpressed in Prolif and Mes subtypes, while FARS was

overexpressed in PN subtype. Kaplan-Meier plots and log-rank

survival analyses showed that the median overall survival time of

under-expressed CARS group was longer (66.9 weeks) than that of

over-expressed group (51.4 weeks). Also, the median overall

survival time of over-expressed FARS group was longer (59.2

weeks) than that of under-expressed group (50.0 weeks).

To search the expression of the 61 probe sets in normal brain

tissues, we assessed the probe sets’ expression signatures with other

independent public GBM gene expression datasets (e.g., GSE4290

dataset) [16]. In the GSE4290 dataset, the expression levels of the

61 probe sets were different between a set of non-tumors and

GBM tumors (Figure 4c). CARS was overexpressed in the GBM

tumors, while FARS was not significantly overexpressed in either

tissue. Of interest, in the GSE4290 datasets for astrocytomas (II

and III) and oligodendrogliomas (II and III), no correlations were

identified with the 61 probe sets (Figures S21, S22, S23),

suggesting that the 61 probe set signature was specific for GBM.

CARS and FARS Correlations with different Molecular
Networks in Patients with GBM
To investigate if there is any difference in the interaction

networks of CARS and FARS in the three subtypes, we selected 48

genes (Table S7) that can directly interact with CARS and FARS

using our previously published data [1]. Then, we performed

a supervised clustering with the 48 genes and GBM samples (GEO

accession #GSE4271). As shown in Figure 5a, this analysis

showed that 24 probes (16 genes) among 48 genes were

differentially expressed in the three discrete subgroups

(P= 0.001). In Figure 5b, several interactors, such as PACSIN2

and SMAD9, were overexpressed PN subtype, while HNRNPR

and GMPS were overexpressed in Prolif subtype. Using 16 genes

as a molecular interaction signature of CARS and FARS, the PN

subtype showed a different feature of expression pattern of each

interactor compared to Prolif and Mes subtypes, suggesting

different interaction patterns of the two ARSs in each subtype.

To detect the differences in the functional profiles, we placed

differentially expressed genes in the context of present interactome

knowledge, using the Ingenuity Pathways Analysis tools (P for all

,0.05), showing that RNA metabolic process (FARSB, SMAD9,

FARS2, MAPK3, HNRNPR, and RARS) was significantly related

with PN and Prolif subtypes. Significantly up-regulated molecular

functions for PN subtype was receptor signaling protein activity

and protein phosphorylation pathway (SMAD9, MAPK3, and

MAP3K5). This analysis showed that the molecular interaction

differences of CARS and FARS in each subtype might be

associated with differences in the clinical outcomes of GBM

patients. Taken together, this study identified a highly inter-

connected network of aberrations, including 61 probe sets (59 PPIs

and 2 ARSs) with the down-regulated CARS and the up-regulated

FARS, which suggested that the difference of the interconnections

might have important roles in long-term survival of patients in

GBM. Thus, our results suggest potential contribution of ARSs

with their interacting gene sets on the phenotype of GBM.

Discussion

Recent evidence suggests that aminoacyl-tRNA synthetases

(ARSs) exhibit remarkable functional versatility and their non-

canonical functions have been pathologically linked to cancers.

This study demonstrates that our integrative genome-wide analysis

of ARSs shows cancer-associated activities in GBM and establishes

61 probe sets as survival signatures that are differentially expressed

in the three different prognosis subgroups in patients with GBM.

The interaction networks of CARS and FARS reveal the

molecular interaction differences of CARS and FARS in each

subtype, suggesting the potential differences in the clinical

outcomes of GBM. This work suggests higher association with

different molecular networks of an ARSs in the biology of GBM,

and may yield key biological mechanisms behind the difference of

the subtypes.

ARSs and AIMPs have been explored as therapeutic targets

against cancer by network mapping criteria and known robust

protein-protein interaction factors for most of these genesets, but

these have been neglected due to the lack of correlations of

genotype-phenotype in certain clinical situations [1]. The wide-

spread acceptance that non-conventional functions of ARSs have

been validated has spurred interest in investigating the reason that

there are many diseases associated with ARSN [17,18]. While

numerous genetic alterations have been described in ARSN

[18,19], such markers have proved to be of non-essential in

guiding disease complexities. Interestingly, recent expression

profiling studies have revealed that regulatory molecular networks

can be key factors to control tumorigenesis [1,10,20]. In the

current study, we identified potential molecular interaction

networks associated with tumor complexity as well as disease

subclasses in GBM signaling pathways.

ARSN Shows Cancer-associated Interactions
We compared the expression profiles of the genes encoding the

23 ARSN with DTGs obtained from the NCI’s cancer gene index

(CGI) and established a cancer-association map showing how

Aminoacyl-tRNA Synthetase in Glioblastoma
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much ARSs and AIMPs could be differently interacted to ten

different cancers. The strong association between ARSN and the

ten cancers is consistent with our previous findings [1]. In our

previous analysis, the 23 ARSN showed expression profiles that

are similar to those of CAGs in ten different cancer types and that

are clearly distinguishable from the pattern of nonCAGs

(combined P,0.0001). ARSN showed a high degree of association

in most of the tested cancers, except for pancreas, prostate, liver,

and gastric cancers, which was consistent with our results. Reasons

for association of ARSN with some cancer types (e.g., lymphomas,

breast) but not others (e.g., pancreatic, prostate) should be further

studied. Among the components of ARSN, in our two results, both

GARS and AIMP1 showed relatively higher cancer-associated

network, indicating their potential importance in cancer biology.

While there has been progress in understanding the role of AIMP1

in cancer [21,22], GARS functions in cancer biology have not

been defined. Several previous studies have reported GRS-

associated phenotypes that 11 distinct mutant alleles for GRS in

the human population caused CMT (Charcot–Marie–Tooth)

neuronal disease [19] and GRS upregulation in autoimmune

patients [23] and defects in GARS are the cause of distal spinal

muscular neuropathy type 5 [24]. Consistent with well-established

correlations of GRS to several diseases, we already found that

GRS proteins or fragments have activity to induce apoptosis of

cancer cells specifically. In our previous study, the GRS proteins

secreted from the macrophages was attached to cancer cells and

involved in specific anticancer activities through caspase 3

activation and MAPK inactivation [25,26]. While the current

analysis utilizes a large scale analysis, these molecules are

representative of a particular interest for new markers related to

cancer treatments.

Finding of ARSN Biology-associated Patient Subtype in
Glioblastoma
For GBM-associated systematic analyses of ARSs and AIMPs,

we performed ARSN-DTGs/PPIs/nonCAGs interaction analyses

and visualized the relationship using several correlation maps,

showing a significant positive or negative correlation between

ARSN and other two gene sets. Pearson correlation coefficient is

one of the most convenient measures to evaluate gene expression

similarities. In our data set (254 GBM affymetrix U133plus2

microarray dataset), we used enough number of dataset because

a smaller sample number tends to produce larger amplitude of

correlation values between any two genes [27]. Also we did not

integrate other dataset using public database because selection of

the GeneChip normalization method strongly affected the

performance of coexpression data. We used Pearson correlation

coefficient itself to compare each dataset and showed the

differences among the datasets statistically significant (P,0.001,

one-way ANOVA). WARS, RARS, and AIMP1 in the first group

showed highly associated correlation with 31 DTGs. While most

ARSN members in the second group showed weak correlations,

MARS in the third group was distinguished by markedly negative

correlation with the DTGs. Two highly associated groups showed

activation of ANSN and DTGs gene expression, indicative of

protein biosynthesis and cell proliferation, respectively. Previous

Figure 4. ARSN biology-dominant groups in patients with GBM. (a) We identified probe sets whose expression most strongly correlated with
survival (Kaplan-Meier plots versus survival times, log-rank t-test ,0.05). This analysis identified that 122 resulting probe sets of ARSN, DTGs, and PPIs
that were correlated with survival in patients with GBM. Then, we performed a supervised clustering with the probesets and GBM subtypes such as
proneural (PN), proliferative (Prolif) and mesenchymal (Mes). This analysis showed that 61 probeset as signature genes were differentially expressed in
the three discrete subgroups. The 61 probe sets are presented in matrix format, where rows represent individual genes and columns represent each
tissue. Each cell in the matrix represents the expression level of a gene in an individual tissue. Red and green cells reflect high and low expression
levels, respectively. (b) Tumor subgroups are distinguished by CARS and FARS. Horizontal bars denote mean values. CARS is enriched in Mes and
Prolif subgroups, while FARS in PN subgroup. Each Kaplan-Meier plot of overall survival in 130 GBM patients grouped on the basis of expression of
CARS and FARS. The difference between two groups was significant when the P value was less than 0.05. (c) Hierarchical clustering of the GSE4290
dataset of 81 GBM samples from patients with GBM and 23 non-tumor tissues based on the 61 probe sets. Each gene with an expression status were
shown in Supplementary Figure S21–S23. Nine probes were significantly overexpressed in the non-tumor samples, with 2 probes not showing in this
analysis.
doi:10.1371/journal.pone.0040960.g004
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studies have suggested the overexpression of MRS in glioma and

glioblastomas [11] but have not indicated the cause of the cancer.

Of note, WRS- and MRS-guided groups are characterized by

another signature analysis that has been associated with the

patterns of gene-class association types. In this analysis, genes

driving glioblastomas such as KRAS, NF1, MARCKS, TGFb2,

TP53, and NFKB1 were differentially correlated with three classes

of ARSN showing very similar groups to mentioned above [28–

33]. These results indicated that ARSNs suggest possible

mechanisms and processes involved in the cancer-associated

regulation of GBM biology [34].

Several clinical information such as tumor stage and grade are

powerful predictors of outcome in patients with cancers [35,36].

Although these factors do not predict survival or response to

therapy in patients with advanced disease [36], DNA microarray

analyses have identified genes whose expression levels correlated

with survival in cancers [37]. Several gene expression studies have

identified prognostic gene sets using a statistical cut-off alone, but

these genes have not been validated for more accurate diagnosis

and prognosis. To identify clinically relevant gene expression

profiles correlated with long-term survival and ARSN biology-

dominant subgroups in GBM tumors, we first identified probe sets

whose expression most strongly correlated with survival, showing

122 resulting probe sets in patients with GBM. Using well-known

glioblastoma subtypes such as PN, Prolif and Mes [15], we found

that a cluster of 61 signature genes were differentially expressed in

the three discrete subgroups. The PN subtype showed a dominant

feature of expression pattern of the 61 gene sets, while Prolif

subtype appears similar to Mes subtype. The Prolif and Mes

subtypes could appear to vary with the mere extent of expression

of these 61 signatures compared to PN subtype and not

diametrically oppositely regulated compared to 35 signature genes

as reported previously [15]. However, the 61 probe sets were

significantly correlated with survival among the 846 probe sets that

can directly interact with ARSN, and differentially expressed in

the three discrete subgroups based on the statistical cut-off

(P = 0.01). This study thus suggests that the molecular interaction

differences of ARSN in each subtype might be associated with

differences in the clinical outcomes of GBM patients. Also, a highly

interconnected network of the 61 probe sets might correlate with

the established better survival markers of the PN such as a younger

age and grade III-like histology [15]. Of note, the expression of

CARS and FARS appears to be unique to tumors of the PN

subtype. We then used the interaction networks of CARS and

FARS to explore the molecular interaction differences of CARS

and FARS in each subtype, suggesting the potential differences in

the clinical outcomes of GBM patients. Our protein interaction

network-based approach is to explore inter-connected proteins

responsible for specific cellular functions [38]. Using the PPI

networks, the identified disease-related genes could be functionally

related and reveal key biological mechanisms behind the

difference of the subtypes [39,40].

The significant association between CARS and FARS, and the

PN signature supports our classification, linking the existence of an

ARSN biology-dominant subgroup, not described in other studies.

Thus, the 61 gene signatures might correlate with the established

survival markers of the PN [41], but in this study we could not

show a clear hypothesis to explain the relationship two poor

prognosis subtypes with the signatures. Thus, further studies and

reproducible results are necessary to evaluate an ARSN biology-

dominant subgroup in the biology of GBM. Also, understanding

whether any of these targets are driver genes of aberrant tumor

growth and survival potency in GBM is a next major challenge of

our research. Taken together, our results suggest potential

contribution of ARSN with their interacting DTG and PPI gene

sets on the phenotype of GBM. Our findings provide the rational

basis for the development of new drug leads and therapeutic

concepts in the ARSN studies [42,43].

Figure 5. Molecular signatures of CARS and FARS interaction networks in patients with GBM. (a) We identified probe sets whose
expression most strongly correlated with CARS and FARS in each subtype. This analysis identified that 88 resulting probe sets of the 48 genes. Then,
we performed a supervised clustering with the probesets and GBM subtypes such as proneural (PN), proliferative (Prolif) and mesenchymal (Mes). This
analysis showed that 24 probeset as signature genes were differentially expressed in the three discrete subgroups (P = 0.001). The 24 probe sets are
presented in matrix format, where rows represent individual genes and columns represent each tissue. Each cell in the matrix represents the
expression level of a gene in an individual tissue. Red and green cells reflect high and low expression levels, respectively. (b) Tumor subgroups are
distinguished by interactors of CARS and FARS. Horizontal bars denote mean values.
doi:10.1371/journal.pone.0040960.g005
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Materials and Methods

Geneset Selection
We selected 4 different genesets, as published previously [1], to

examine the potential association of the ARSs and AIMP1–3

(together referred to as ARSN) with GBM at a systemic level.

Briefly, we used the NCI cancer gene index, a collection of records

on 6,955 human genes that were selected from Medline searches

using cancer-related disease or drug/compound terms in the NCI

Thesaurus (https://cabig.nci.nih.gov/inventory/data-resources/

cancer-gene-index). From these genes, we selected 3501 cancer-

associated genes that have been validated by manual curation, and

causal relationship to cancer. Using 11 public database showing

the curated interactions of human proteins (HPRD, BioGRID,

KEGG, Reactome, BIND, MINT, IntAct, InnateDB, DIP,

STRING, and PharmDB), we further selected 528 protein-protein

interactors with 23 ARS/AIMPs. Among those genes, we selected

124 DTGs that consistently up- or down-regulated in 43 GEO sets

(www.ncbi.nlm.nih.gov/geo) of 14 different cancer types, and 404

genes as protein-protein interactors (PPIs) of ARSs. The curated

interactions were defined as the ones identified by various assays

including yeast two hybrid and immunoprecipitation. For the

comparison, we also selected 1874 non-cancer-associated genes

(nonCAGs) that are not included in the CGI and do not show

significant cancer-associated expression profiles in 22 public

cancer datasets (P values .0.5) as reported previously [1]. These

genes may interact with ARSN but not implicated in cancer.

Glioblastoma Dataset in The Cancer Genome Atlas
To analyze the expression data, we directly accessed the input

data through TCGA Data Portal (254 GBM affymetrix U133plus2

expression array). The CEL files were re-processed using the R

statistical computing platform and packages from Bioconductor

bioinformatics software project (www.r-project.org), and a RMA

(robust multiarray average) intensity on a log-squared scale was

generated for each probe set. Two independent filters were applied

to probesets to remove low level signal intensity or not expression

in brain tissue: 1) Probesets with less than 10% ‘‘present’’ and

‘‘marginal’’ calls were removed. 2) Probesets that contains more

than 10% of accumulated zeros across samples were removed.

These steps reduced the probesets from 54,000 to 34,178 in the

set. Genes that have significantly changed can then be analyzed

further. A t-test assesses whether the means of two groups are

statistically different from each other. Then we performed

supervised hierarchical clustering based on the most variably

expressed genes using the Euclidean distance as the similarity

metric and the complete linkage method as the between-cluster

distance metric. We analyzed the functional networks using tools

from Cytoscape that is an open-source software for visualizing

molecular interaction networks [44]. To validate the data

generated by TCGA, we directly accessed another independent

public GBM gene expression datasets (GEO accession

#GSE4271) [15]. In total, 100 tumors having survival clinical

data were profiled for class discovery and survival analysis.

Survival was defined as the time interval from surgery until the

date of death.

Correlation-coefficient Map Construction
To calculate the degree of association between ARSN geneset

and other three genesets on the basis of their gene expression, we

calculated correlation coefficient as follows [45–47]; we normal-

ized each expression level of one probeset by subtracting its row-

wise mean and dividing by its row-wise standard deviation;

normalized each expression level of another probeset by subtract-

ing its row-wise mean and dividing by its row-wise standard

deviation. Then we took the inner product of the one normalized

probeset and the transpose of the normalized another probeset;

and divided each element in the resulting matrix by the number of

microarray minus one. The resulting correlation coefficient matrix

contains Pearson correlation coefficients relating an association

pattern in the ARSN expression and other three probesets

expression. Each probeset was then clustered on the basis of

Pearson correlation coefficients that related their expression

patterns across the 254 GBM tissues to the expression patterns

of ARSs over the same tissue set. We then clustered PPIs and

nonCAGs over ARSN on the basis of these correlation

coefficients. Hierarchical clustering (GENE CLUSTER v3.0)

and display programs (TREE VIEW) were used for analysis

(http://rana.stanford.edu/software). We performed unsupervised

hierarchical clustering based on the most variably expressed genes

using the Euclidean distance as the similarity metric and the

average linkage method as the between-cluster distance metric.

Supervised clustering of experimental samples was performed by

reducing the number of genes by statistical analysis.

Survival-associated Probeset Analysis
To identify probe sets whose expression most strongly correlated

with survival, samples were assigned into two groups based on the

expression of each probeset such as a low expression group and

a high expression group. We then performed Kaplan-Meier

survival analysis (Kaplan-Meier plots versus survival times, log-

rank t-test ,0.05) and estimated the survival distributions and the

log-rank test to assess the statistical significance of the differences

between the stratified survival groups using GraphPad Prism

(version 5, GraphPad Software Inc., San Diego, CA) [48]. Then,

we assigned each of the samples to three well-known glioblastoma

subtypes [15] by hierarchical clustering using the resulting

survival-associated probe sets that were selected as mentioned

above. A t-test (p,0.01) was used to identify marker genes whose

expression differed between samples in each subtype class

compared to other subtypes. For each subtype, differentially

expressed class signatures were compared to discover a degree of

difference. To verify class signatures in independent samples,

expression profiles of GBM samples were used [49] and predicted

the subtype of the samples in this validation dataset.

Pathway Analyses
Genes that showed differences in their expression levels were

selected for the different analyses (functional cluster analysis and

biological pathway analysis). To classify the pathway profiles,

functional analyses and KEGG (Kyoto Encyclopedia for Genes

and Genomes) pathway analyses (http://www.genome.jp/kegg/

pathway.html) were carried out as previously described [50,51].

To perform a KEGG analysis, differentially expressed genes of

each subtype were used for the calculation of their attribution to

pre-defined KEGG signaling pathways and analyzed by pair-wise

comparisons. The different number of genes were seen in a given

pathway. The Ingenuity Pathway Analysis software (IPA, In-

genuity Systems, Mountain View, CA) was utilized to identify

networks of interacting genes and other functional groups.

Semantically consistent pathway relationships were modeled based

on a continual, formal extraction from the public domain

literature (www.ingenuity.com/products/pathways_ knowl-

edge.html).
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Supporting Information

Figure S1 Cancer-associated interactions between ARSs
and AIMPs, and PPI. We selected 124 DTGs that can

significantly interact with 23 ARS/AIMPs, and 404 genes as PPIs

of ARSs. For the comparison, we also selected 1874 non-cancer-

associated genes (nonCAGs). Each brown node indicates each

gene of the geneset. Line indicates the co-association with ARSN.

(TIF)

Figure S2 Cancer-associated interactions between ARSs
and AIMPs, and DTGs.
(TIF)

Figure S3 Cancer-associated interactions between ARSs
and AIMPs, and nonCAGs.
(TIF)

Figure S4 Numbers of the cancer-associated interac-
tions between ARSs and each geneset. A large number of

the line based on the node of ARSN-DTGs indicates higher

association between ARSN and DTGs than ARSN-PPIs.

(TIF)

Figure S5 A cancer-association map of DTGs in brain
cancer. Using a cancer-associated interactions analysis, a cancer-

association map was established to display how much each DTG

gene could be differently interacted to ten different cancers. Each

brown node indicates each gene of the DTGs and node size

indicates the degree of cancer-dependent co-association of the

gene.

(TIF)

Figure S6 A cancer-association map of DTGs in breast
cancer.
(TIF)

Figure S7 A cancer-association map of DTGs in cervical
cancer.
(TIF)

Figure S8 A cancer-association map of DTGs in colon
cancer.
(TIF)

Figure S9 A cancer-association map of DTGs in gastric
cancer.
(TIF)

Figure S10 A cancer-association map of DTGs in
hematopoietic and lymphatic cancer.
(TIF)

Figure S11 A cancer-association map of DTGs in renal
cancer.
(TIF)

Figure S12 A cancer-association map of DTGs in liver
cancer.
(TIF)

Figure S13 A cancer-association map of DTGs in lung
cancer.
(TIF)

Figure S14 A cancer-association map of DTGs in
prostate cancer.
(TIF)

Figure S15 Histogram showing the frequency of the
correlation coefficient. The histogram was computed from the

three interaction set. Bars represent number of correlation

coefficients within the range indicated on the x-axis (P,0.001,

one-way ANOVA).

(TIF)

Figure S16 Correlation patterns of 23 ARSs and AIMPs
to PPI. Hierarchical clustering analysis showed that ARSN were

shared by two groups with 119 PPIs (FDR,0.014). 119 PPIs were

generated on a supervised hierarchical clustering analysis.

(TIF)

Figure S17 Correlation patterns of 23 ARSs and AIMPs
to PPI. Hierarchical clustering of ARSN based on the 117 DTGs

based on nonlinear association between two gene expression sets.

117 PPIs were correlated with two subgroups of ARSN.

(TIF)

Figure S18 Effect of ARSN gene expression on survival
in 254 GBM patients. Kaplan-Meier plot of overall survival in

254 GBM patients grouped on the basis of expression of each

probeset. The difference between two groups was significant when

the P value was less than 0.05.

(TIF)

Figure S19 Effect of DTG gene expression on survival in
254 GBM patients.
(TIF)

Figure S20 Effect of PPI gene expression on survival in
254 GBM patients.
(TIF)

Figure S21 Hierarchical clustering of the GSE4290
dataset. Hierarchical clustering of the GSE4290 dataset of 81

GBM samples from patients with GBM and 23 non-tumor tissues

based on the 61 probe sets. Nine probes were significantly

overexpressed in the non-tumor samples, with 2 probes not

showing in this analysis. The data are presented in matrix format

in which rows represent individual genes and columns represent

each tissue. Each cell in the matrix represents the expression level

of a gene feature in an individual tissue. Red and green in cells

reflect high and low expression levels, respectively.

(TIF)

Figure S22 Hierarchical clustering of the GSE4290
dataset of astrocytomas (II and III).
(TIF)

Figure S23 Hierarchical clustering of the GSE4290 data
set of oligodendrogliomas (II and III).
(TIF)

Table S1 Four gene sets including ARSN, DTG, PPI, and
nonCAG.
(XLS)

Table S2 Probe sets of each ARSN, DTG, PPI, and
nonCAG.
(XLS)

Table S3 31 DTG genes associated with ARSN.
(XLS)

Table S4 16 DTGs correlated with three subgroups of
ARSN.
(XLS)

Table S5 122 probe sets correlated with survival in
patients with GBM.
(XLS)

Table S6 61 probe sets among 122 probe sets.
(XLS)
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Table S7 48 genes that can directly interact with CARS
and FARS.
(XLS)
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