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ABSTRACT: Lung cancer-related transcription factors (TFs)
were identified by integrating previously reported genomic,
transcriptomic, and proteomic data and were quantified by
multiple reaction monitoring (MRM) in various cell lines. All
experiments were performed without affinity depletion or
subfractionation of cell lysates. Since the target proteins were
expected to be present in low abundance, we experimentally
optimized MRM transition parameters with chemically
synthesized peptides. Quantitation was based on stable
isotope-labeled standard peptides (SIS peptides). Out of 288
MRM measurements (36 peptides representing 28 TFs × 8 cell lines), 241 were successfully obtained within a quantitation limit
of 15 amol, 221 measurements (91.7%) showed coefficients of variation (CVs) of ≤20%, and 149 (61.8%) showed CVs of ≤10%,
quantifying as low as 19.4 amol/μg protein for STAT2 with a CV of 6.3% in an A549 cell. Comparisons between MRM
measurements and levels of the corresponding mRNAs revealed linear, nonlinear, or no relationship between protein and mRNA
levels, indicating the need for an MRM assay. An integrative analysis of MRM and gene expression profiles from doxorubicin-
resistant H69AR and sensitive H69 cells further showed that 14 differentially expressed TFs, such as STAT1 and SMAD4,
regulated genes associated with drug resistance and cell differentiation-related processes. Thus, the analytical performance of
MRM for the quantitation of low abundance TFs suggests its usefulness for biological application.
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■ INTRODUCTION

For several decades, immunobased assays, such as ELISA,
Western blot, FACS and other immunoassay methods, have
been widely utilized in clinical laboratories for the discovery
and validation of the biomarkers.1−3 This long period of study
with immunoassays has provided much important experimental
knowledge and diagnostic information on patients. In addition,
fluorescent spectroscopic detection with these assays has
provided very high sensitivity for low-abundance targets.4

Thus, these assays are well-accepted in clinical research fields.
However, these assays are restricted to small number of targets,
and the results are very dependent on the quality of the
antibodies for each target protein. Also, the cost of generating a
highly efficient antibody for a newly targeted biomarker is quite
high.
The application of mass spectroscopic (MS) techniques,

particularly liquid chromatography−tandem mass spectrometry
(LC−MS/MS), to peptide and protein research in the mid-

1990s opened a new field termed MS-based proteomics.5 This
technology is very powerful in that it can identify and quantify
the peptide sequences of the target proteins in a complex
mixture.6,7 Recently developed instruments, with a fast scan
speeds, multiplexing capabilities, high resolution, and accurate
mass measurement capabilities, have increased the applications
of MS in proteomics research. Sample concentration and
selective target enrichment facilitate the application to low-
abundance proteins.8,9 In addition, the use of data independent
acquisition (DIA) in MS improves the selectivity for the low
targets.10 However, these complicated procedures require
expert knowledge and skill. Moreover, the quantitative and
even qualitative information obtained from the techniques may
give different analytical results between laboratories.
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The development of multiple reaction monitoring (MRM)
with triple quadrupole (QQQ) MS systems as an attractive
biomarker quantitation tool has led to a new area of analytical
research.11−14 The advantages of MRM are varied by targeting
and quantifying analytes of interest. MRM has strengthened
genomics-driven findings.15 Although massive genomic data
continue to flood into diagnostic laboratories, absolute
quantitation at the protein level is essential since the expression
level of a protein in a biological sample is critical in disease.16,17

Nano-LC interfaced to MRM-MS enables multiple low-
abundance targets to be simultaneously quantified.18,19 This is
very important since various targets play critical roles in a
disease.18 MRM is also a rapid, selective, sensitive and cost-
effective bioanalytical strategy. Like LC−MS/MS, the sample
analysis time is very fast once the instrumental parameters, such
as collisional energy (CE), declustering potential (DP),
retention time (tR), target transition, etc., have been
optimized.18 By optimizing DP and CE, ionization and
fragmentation efficiencies can be improved for sensitive
MRM assay. The scheduling algorithms in recent QQQ
instruments enable over 1000 targets to be scanned in
predefined time zones during a single run.20 This feature
makes this technique superior to ELISAs, which need more
than a day to analyze 96 target proteins. Moreover, the MRM
process does not require any antibody for most experiments,
since it requires only the transitions of the proteotypic peptides
for the target proteins. Another advantage of QQQ is the
selectivity of the user-defined transitions. In QQQ, there are
basically two mass filtering systems located in the first and third
quadrupoles. The first quadrupole selects the precursor ions
(intact peptides) and the third quadrupole selects the product
ions (after fragmentation of the peptides in the second
quadrupole, the collision cell). This selective process filters
out undefined transitions and chemical noise and allows the
quantitation of low-abundance targets, resulting in higher
sensitivities. Therefore, high speed multiplexed MRM makes it
possible to analyze low-abundance targets in large numbers of
real samples, which is required for biomarker validation.
In this study, we used an MRM assay for multiplexed analysis

of low-abundance transcription factors (TFs) in various lung
cancer cells. Lung cancer has the second highest mortality rate
and the highest death rate among cancers.21 Chemotherapy
using doxorubicin (DOX) and its combination with other
agents has been the most effective treatment for small cell lung
cancer patients.22,23 However, lung cancer patients may possess
or develop resistance to DOX. Several DOX resistance factors
have been proposed, including (i) ABC transporters (MDR1/
ABCB1, MRP1/ABCC1etc.),24 (ii) glutathione-S-transferase
(GSTpi),25,26 and (iii) metallthionein.27 However, determi-
nation of the signaling pathways and/or the TFs inducing these
resistance factors is still elusive. Proteomic analysis of TFs can
confirm the association of these TFs with DOX resistance in
lung cancer. However, the abundance of most TFs in lung
cancer cells is low, compelling researchers to reduce the
complexity of samples by affinity isolation or fractionation.28,29

Here, without affinity depletion and fractionation of lung
cancer-related cell lines, we have quantified multiple low-
abundance TFs by using a nano-LC−MRM assay. Our results
suggest that diagnostic and prognostic applications of lung
cancer-related TFs are possible if an MRM assay is used.

■ EXPERIMENTAL PROCEDURES

Selection of Proteotypic Peptides for MRM Assays

We generated target peptide lists for our MRM assay by
considering the following peptide selection criteria: peptides
containing 6 ≤ amino acids ≤ 20mers were chosen first. Since
m/z 1250 is the maximum scan range of the ABI QTrap5500
triple quadrupole mass spectrometer, peptides with m/z values
less than 1250 Da were selected. Also, doubly or triply charged
precursor ions were preferentially chosen since the ions were
stable and reproducible for MRM quantitation. Most peptides
containing prolines at P2 (xxxxPK/R) or P3 (xxxxPxK/R) sites
were excluded from the lists because their prominent fragment
ions (y2 or y3) might overlap with highly intense noise peaks
between 300 and 400 Da, and these ions would be hard to
distinguish from the interferences. However, we were able to
select 7.1% out of the 281 peptides that were free from
background interference. The peptides represent 147 TFs
selected from 1191 lung cancer-related proteins (Figure 1).

Other points of consideration were the specificity of tryptic
digestion and unavoidable chemical modification during sample
preparation. Peptides with basic amino acids (K or R) at P1′
site were excluded. In this case, the cleavage between two basic
residues (such as KR, RK, RR, and KK) is often incomplete
since it competes with the cleavage after the second residue.
Prolines (P) after the tryptic site were removed for the same
reason. Peptides with N-terminal glutamines (Q) were
eliminated due to potential deamidation of the amide-
containing side chains.30 Peptides containing methionines
(M) or cysteines (C) were removed because of their
susceptibility to oxidation.
After refining the peptide lists on the basis of the

aforementioned criteria, a BLAST search was performed to

Figure 1. Overall experimental workflow for the TF MRM assay. The
1911 lung cancer-related proteins were collected after identifying
DEGs and DEPs from previously reported somatic mutations, CGHs,
epigenetic, gene expression, and protein profiles.
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find unique peptides within the human genome. Three hundred
ninety-five unique peptides representing 147 TFs were found
using this procedure. Some proteins had more than 5
proteotypic peptides and others had only 1−3 peptides.
Finally, priority was given to frequently observed peptides in
MS databanks, GPM (19.9% of total peptides used in this
experiment) and PeptideAtlas (8.5%). Most of the time,
selected 3 peptides were used for a target TF, resulting in 282
proteotypic peptides for the initial MRM assay.

Synthetic Peptides

Crude peptides (282 peptides; SpikeTides, JPT Peptide
Technologies) were purchased for experimental optimization
of MRM transition parameters. Approximately 50 nmol of each
peptide was provided by the vendor. The peptides were
resolubilized in 200 μL of 20% acetonitrile (≥98%, J.T. Baker,
NJ) with 1% formic acid (≥98%, Merck, Darmstadt, Germany)
to make ∼250 nmol/mL stock solution. Subsequently, two
dilution series (250 pmol/mL and 5 pmol/mL) of each stock
solution were prepared. One out of the 282 peptides,
LLEQSEWQPTNVDGK (IRF1), was not analyzed further
because of incorrect synthesis, resulting in 281 peptides that
were used for the rest of analysis.
For accurate quantification, stable isotope standard (SIS)

peptides with C-terminal [13C6,
15N2] lysine and [13C6,

15N4]
arginine (SpikeTides TQL, JPT Peptide Technologies), were
purchased. The SIS peptides contained JPT tryptic tags and
needed to undergo tryptic digestion to release the respective
proteotypic peptides. For each sequence, amino acid analysis
(AAA) was performed, and the absolute peptide amount was
given by the vendor. All SIS peptides were spiked into cell line
lysates prior to tryptic digestion.

Sample Preparation

Eight lung cancer cell lines, A549 (carcinoma), H460
(carcinoma; large cell lung cancer), H1299 (carcinoma; non-
small-cell lung cancer), H23 (adenocarcinoma; non-small-cell
lung cancer), Calu-1 (epidermoid carcinoma), H520 (squ-
amous cell carcinoma), H69 (carcinoma; small cell lung
cancer), and H69AR, were obtained from the American Type
Culture Collection (Table 1). At the time of information
collection for the cell lines, they were highly cited in the
literature, on the basis of searches in done in Google Scholar
and PubMed. The cells were cultured in RPMI1640 (Gibco,
Rockville, MD) supplemented with 10% fetal bovine serum
(Gibco, Rockville, MD), 1% penicillin and 1% streptomycin
(Gibco, Rockville, MD) at 37 °C in a humidified 95% air, 5%
CO2 incubator. The cells were grown to approximately 70%
confluency (approximately 7.0 × 106 cells) in 100 mm culture
dishes (Nunc, Naperville, IL). After the cell monolayer was
rinsed carefully with chilled phosphate buffered saline (PBS) 3

times, the intact cellular proteins were isolated. The PBS was
removed by aspiration, and 500 μL of chilled lysis buffer (8 M
Urea, 75 mM NaCl, 50 mM Tris pH 8.3) was used. The lysates
were transferred into 1.5 mL tubes and sonicated three times
with a 1 s pulse, with intermittent cooling for 19 s at 4 °C, and
centrifuged at 12 000 rpm for 10 min at 4 °C to eliminate cell
debris. Clear supernatants were collected in 1.5 mL Eppendorf
tubes, and the amount of total proteins in the cells was
measured by Bradford assay (Bio-Rad, Richmond, CA). The
samples were stored at −80 °C when not in use.
To reduce disulfide bonds, 50 mM tris(2-carboxyethyl)-

phosphine (TCEP) was added into 250 μg of the proteins to
make final concentration at 5 mM, and the mixture was
incubated with gentle shaking at 37 °C for 40 min. The reduced
proteins were cooled down to room temperature (25 °C), and
140 mM IAA (iodoacetamide, alkylating reagent) was added to
make the final concentration at 14 mM. The samples were
diluted 10-fold with 50 mM Tris-HCl (pH 8.3), to dilute urea
in the sample to less than 1 M. The synthetic crude peptides or
the SIS peptides, if required, were spiked into the samples at
this step. For the tryptic digestion, 100 mM CaCl2 was added to
make the final concentration 1 mM, and 1/100 (enzyme/
substrate) trypsin was incubated with the samples at 37 °C for
16 h. To stop the reaction, 0.1% TFA (pH < 3.0) was added.
Finally, samples were desalted with Sep-pak reversed phase
cartridges (Waters, Milford, MA), dried via vacuum centrifu-
gation, and stored at −20 °C until use.31

LC−MRM Setup

For optimization of MRM transitions, 7 to 8 synthetic peptides
(5 pmol/mL stock solution) were mixed to prepare 40 different
mixtures, which included 281 crude peptides, and each mixture
was directly infused into a QTrap5500 hybrid linear ion-trap
triple quadrupole mass spectrometer (ABSciex, Foster City,
CA), equipped with TurboSpray source. MRM transitions for a
total of 281 peptides were optimized.
MRM quantitation was performed on the mass spectrometer

equipped with a nanoelectrospray ion source. Chromatographic
separation of the peptides was performed using an Eksigent
nanoLC-Ultra 1D plus (Eksigent Technologies, CA). Each
sample was injected with a full sample loop injection of 1 μL
and 1000 nL timed injection using mobile phase A (98% water,
2% acetonitrile, 0.1% formic acid). The protein concentrations
of each sample were 2 μg/μL. Samples were separated on a
column (75 μm × 12 cm) packed in house with Magic C18
(pore size 200 Å, particle size 5 μm) reversed-phase resin
(Michrom Bioresources, Auburn, CA). A guard column (75 μm
× 1 cm) was also used in order to protect the analytical column.
A linear gradient of 2−30% mobile phase B (99.9% acetonitrile,
0.1% formic acid) for 40 min with a flow rate of 300 nL/min

Table 1. Cell Lines Selected for MRM Experiments

name disease source species Google Scholara Pubmeda metastatic site

A549 carcinoma lung human 48800 6342 x
Calu-1 carcinoma, epidermoid lung human 1460 113 pleura
NCI-H23 adenocarcinoma, NSCLC lung human 1210 55 x
NCI-H460 carcinoma, large cell lung human 3820 308 pleural effusion
NCI-H520 carcinoma, squamous cell lung human 384 33 x
NCI-H1299 carcinoma, large cell neuroendocrine lung human 620 81 lymph node
NCI-H69 carcinoma, small cell lung cancer lung human 1410 158 pleural effusion
H69AR carcinoma, small cell lung cancer, multidrug resistant lung human 526 40 x

aThe total number of citations for each cell line in Google Scholar and Pubmed at the time of data collection.
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was applied for the separation, and elution at 80% mobile phase
B for additional 10 min was used to wash the column followed
by a 20-min re-equilibration time.
The MS was operated in the positive ion mode with the

following parameters: ion spray voltage of 2100 V, curtain gas
at 20 psi, nebulizer gas at 25 psi, resolution at 0.7 Da (unit
resolution) for Q1/Q3, interface temperature at 150 °C, and
scan mass range of 300−1250 m/z. The CE, collisional cell exit
potential (CXP), and DP were set on the basis of the
optimization results for the crude peptides. The identical
experimental conditions were used for SIS peptides. Quantifi-
cation experiments were performed using the scheduled MRM
mode with an MRM detection window of 420 s and cycle time
of 1.5 s. Figure S1 (Supporting Information) shows the
optimized CE. Linear regression of the optimized CE was CE =
0.046 m/z − 0.621 V (R2 = 0.754) for doubly charged
precursors, and CE = 0.040 m/z + 0.780 V (R2 = 0.489) for
triply charged precursors.

Qualitative and Quantitative MRM Assays

For identification of targets in LC−MRM, a dilution series of
the crude peptides was spiked into cell lysates and analyzed.
Analyst software (version 1.5.1, Applied Biosystems/MDS
Sciex) and MultiQuant software (version 1.2 Applied
Biosystems/MDS Sciex, Foster City, CA) were used to
interpret the data. The retention times and order of transitions
obtained from the synthetic peptides were used to assign the
target peptides from the endogenous TFs. Of the 281 peptides
tested, 63 peptides were successfully assigned as detectable
MRM targets, and their SIS peptides for quantitative analysis
were purchased.
The previously measured average retention time of each

peptide was used to set up the scheduled MRM analysis.
Triplicate MRM runs for each cell line were performed to
determine the repeatability of the experiment. The most
intense transition of the 3 selected transitions was used to
calculate the concentration of a peptide of a target TF. Peak
areas were integrated by setting a 3-point Gaussian smooth
width, a 30 s tR half window, and a 2-point peak splitting factor
in MultiQuant integration algorithm. The concentration of each
peptide was determined by calculating the peak area ratio of
endogenous peptide and the corresponding SIS peptide. The
values were corrected by multiplying the slope of the peptide
response curve. The final concentrations were averaged from
triplicate MRM runs for each target.
To generate peptide response curves of the 63 peptides, a

dilution series, 6−13 calibration points, of SIS peptides were
spiked into a pooled sample matrix, and triplicate MRM
experiments were performed for each dilution (reverse
response curve). Peak areas of different concentration of SIS
peptides were normalized to those of constant endogeneous
peptides from the sample matrix. Standard curves were
generated by linear regression of normalized peak areas as a
function of SIS concentrations. The curves were used to predict
the amounts of the endogenous peptides and to measure the
lowest limit of quantitation (LLOQ), in which LLOQ was the
lowest concentration of SIS peptides on the linear regression
line within coefficient of variation (CV) ≤ 20% and coefficient
of determination (R2) ≥ 0.99. For the 35 peptides whose
endogenous levels were below the LLOQs determined from a
pooled cell lysate, the peak areas of SIS peptides were directly
used without normalization.

Correlation Analysis between Protein and mRNA
Abundances

To identify the relationships between MRM measurements and
gene expression data of TFs in the six lung cancer cell lines
(A549, H460, H1299, H23, Calu-1, and H520), we used the
gene expression data sets (accession number = GSE833232)
obtained from Gene Expression Omnibus (GEO) database, a
public genomics data repository.33 To identify linear relation-
ships, the gene expression data were linearly fitted with MRM
measurements. On the other hand, to identify a nonlinear
relationship, the gene expression data were fitted with log-
transformed MRM measurements. The R2 statistic, F statistic,
and p-value for the fitted models were calculated as described in
Walpole.34 The fittings with p-values < 0.1 were identified as
significant relationships.
Identification of DOX Resistance-Related TFs and Genes

To identify DOX resistance-related TFs, we quantified the
levels of endogenous peptides using the corresponding SIS
peptides. Using these data, we then identified 14 DOX-
resistance related TFs as differentially expressed TFs (DETFs)
between DOX-sensitive (H69) and -resistant cells (H69AR)
with p-values < 0.05 from two-tailed t test and fold-change
larger and less than 1.5. We further analyzed gene expression
profiles (GEO data set accession number = GSE10841)
generated from DOX-sensitive (H69) and -resistant cells
(H69AR)35 to identify DOX resistance-related genes. We first
normalized the raw intensities using the GCRMA method
(version 2.24.1 with R)36 and then identified differentially
expressed genes (DEGs) between H69 and H69AR cells with
adjusted p-values ≤0.05 and log2-fold-changes ≥1.6 (3-fold),
the 2.5th percentile (i.e., level of significance = 0.05 in the two-
tailed test) of the null hypothesis distribution of the fold change
estimated by performing the random permutation experiments
as previously described.37 To correlate DETFs with DEGs, we
calculated the significance of the number of DEGs regulated by
DETFs. The genes targeted by the 14 DETFs were first
obtained from MetaCore (ver 6.7)38 using the “expand by one
interaction” algorithm with the following options: direction =
“downstream” and interaction type = “transcription regulation”.
Only manually curated high-confidence TF−target interactions
were used. Using the TF−target interactions, we then identified
the target DEGs regulated by the 14 DETFs. Finally, we
computed the significance of the number of target DEGs as
follows: (1) we randomly selected the same number of genes
from all the genes spotted on the same microarray as that of the
upregulated (or downregulated) genes; (2) we then identified
the number of target genes regulated by the 14 DETFs; (3) we
repeated steps 1 and 2 100 000 times and then estimated an
empirical distribution of the number of target genes of the 14
DEFTs; and (4) we computed a p-value as the area under the
empirical distribution from the observed number of up-
regulated (or down-regulated) target genes of the 14 DETFs
in the data to more extreme than the observed number.
Identification of Cellular Processes Represented by the
DEGs and Network Analysis

We identified gene ontology biological processes (GOBPs)
represented by the following sets of genes using DAVID
software:39 DEGs between H69 and H69AR and a subset of
DEGs regulated by the 14 DETFs. GOBPs assigned to each
gene by the gene ontology consortium imply cellular processes
in which the gene is involved.40 For each set of genes, we
identified the GOBPs represented by the genes with P < 0.05.
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Among the GOBPs, we selected the GOBPs commonly
represented by both DEGs and targets of the 14 DETFs.
Finally, we generated a transcriptional regulatory network using
the 14 TFs and their targets involved in the selected GOBPs.
The network was visualized using Cytoscape (v. 2.8.1).41 The
nodes with the same GOBPs were grouped into the same
modules, each of which was named by the corresponding
GOBP.

■ RESULTS

Identification of Lung Cancer-Related TFs by Integrating
Genomic and Proteomic Data

We first collected previously reported somatic mutations,42−46

CGHs,42,47−49 and epigenetic data50−53 associated with lung
cancer. We also obtained gene expression54−59 and proteome
profiles60−65 generated from lung cancer patients or cell lines.
Using these gene expression profiles, we identified DEGs
between lung cancer and healthy tissues using a previously
reported method.37 We also collected data on differentially
expressed proteins (DEPs) in lung cancer tissues or cells from
six previous studies.60−65 Among these DEGs and DEPs, we
defined lung cancer-related genes and proteins as the ones that
were detected more than twice. By combining all of these lung
cancer-related signatures, we were able to identify 1911 factors
that indicated the presence of lung cancer by at least one of

these signatures (Figure 1). From these 1911 factors, we finally
identified 147 lung cancer-related TFs as the ones with
transcriptional factor or regulator activity according to their GO
molecular functions (GOMFs, Table S1, Supporting Informa-
tion). GOMFs assigned to each gene by the gene ontology
consortium imply functions (e.g., kinase activity or DNA
binding) that the gene has.40

Assigning Peptide Peaks of Endogenous TFs on MRM
Chromatogram

We selected 281 peptides for the 147 TFs and purchased their
crude synthetic peptides followed by optimizing MRM
transitions (Figure 1). Once the MRM transitions were
optimized (Figure 2, Figure S2, Supporting Information), we
located the MRM chromatographic peaks for the endogenous
peptides during the LC runs. First, we applied daughter ion
scan mode in QTrap5500 to the A549 crude extract. In this
mode, the enhanced product ion (EPI) scan of the linear ion
trap (LIT) was used instead of Q3, the third quadrupole.
Representative data are shown for a proteotypic peptide,
LPVDLAEELGHR from CDKN2A, in Figure 3A. The ion
intensities were too low to be identified with commercially
available search engines such as MASCOT, SEQUEST, etc
(bottom spectrum). Even with nearly 20 fmol of synthetic
peptide, peak assignment was impossible from the EPI daughter
ion scan (middle spectrum of Figure 3A). Instead, a dilution

Figure 2. Optimization of a representative proteotypic peptide of v-relreticuloendotheliosis viral oncogene homologue A. Initial Q1 scans for doubly
and triply charged ion were performed with the instrumental default DP setting (180 V), and the optimized DP for doubly (blue) and triply (red)
charged ions was found by ramping the voltage. The initial product ion scan for the dominant charge state, doubly charged ion, was performed with
the optimized DP, and 10 most intense product ions were selected for CE optimization. CXP was also optimized for the 5 most intense transitions.
As a final step, the product ions were scanned using all of the optimized instrumental parameters, and the spectra were matched with the theoretical
MS fragmentation pattern. Experimental procedure followed was as shown in Figure S1 (Supporting Information).
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series of the crude synthetic peptide for an endogenous peptide
was spiked into A549 cell extract, and three y-ions, y11+++,
y3+ and y11++, were monitored using the transition
parameters optimized by direct infusion. Without the spiked-
in peptide standard, there were many peaks, and noise peaks
were present (bottom chromatogram of Figure 3A), among
which only the peak at retention time 32.3 min was able to be
identified as genuine since it showed increased intensity in the
presence of spiked peptide (top and middle chromatograms of
Figure 3A). In addition, peak areas showed a linear correlation
with the amount of added synthetic peptide as shown in Figure
3B, from which a rough estimation of the endogenous level of
LPVDLAEELGHR peptide could be made.
In some cases, crude synthetic peptides showed more than

one chromatographic peaks, as is exemplified by the IQTNN-
NPFQVPIEEQR peptide from RELA in Figure 3C. Two peaks
at different retention times were observed when three y-ions,
y6, y7 and y10, of the peptide were used. To identify the real
standard peak, we also monitored b-ions, b5, b6 and b8, and
found that the earlier-eluting peak represented our peptide,
while the later peak was a false positive. It may have originated
from impurities, presumably from synthetic byproducts sharing
the same C-terminal region but with a different N-terminal
region than the correct peptide.
All assignment processes were performed prior to

quantification. After excluding the peptides that were not
detected in any of the cell lines, we finally assigned MRM peaks
for 36 peptides representing 28 endogenous TFs and purchased
their SIS peptides for quantitative analysis.

Linear Response and LLOQ of SIS Peptide in Sample Matrix

Calibration curves were generated with a dilution series of
spiked SIS peptides in a pooled sample matrix (Figure 4 and
Figure S3, Supporting Information). Triplicate MRM measure-
ments were performed for each concentration, and a highly
intense transition of a peptide was used to construct the curves.
To determine limit of quantification (LOQ), conventional
LOQ estimation, such as signal-to-noise, blank determination,
and linear regression, was applied. However, in this particular
study, we also determined the LLOQ for practical MRM
quantitation since the filtering system in quadrupole effectively
eliminates most undefined transitions during analysis,18,66 and
the stabilized ionization of the blank in MS might produce low
standard deviation for baseline signal, resulting in lowering the
LOQ. In fact, the instrumental response to high backgroud
makes the chromatographic baseline unstable, resulting in high
CVs at low concentrations of analytes. Therefore, we defined
the practical LLOQ to be a CV ≤ 20% and R2 ≥ 0.99 as shown
in Figure 4A. Using this definition, the LLOQs of CBL and
PURA were 293 and 195 amol, respectively (see also Table S2,
Supporting Information). Of the 36 peptides determined, the
minimum LLOQ was 15 amol and the maximum was 1.9 fmol
(Figure 4B).
The calibration curves were used to predict the approximate

concentrations of the SIS peptides for quantitative analysis,
where the concentration of SIS peptide added to each cell
lysate was based on the standard curve. Once the concentration
of an endogenous peptide was measured, it was multiplied by
the analytical response factor (i.e., the slope of the curve), to
correct the concentration.

Figure 3. Assigning an MRM chromatogram. (A) Comparison of EPI scan of LIT (right) and MRM measurement (left) with identical sample
concentration; 0, ∼20 and ∼40 fmol of a crude peptide (LPVDLAEELGHR) from CDKN2A. Of the three selected transitions, the most intense ion,
y11+++, was used for generating the MRM chromatogram. (B) Rough estimation of the endogenous peptide concentration by standard addition
method, with five dilutions of a crude peptide solution. (C) Peak assigning in the case of impurities (RELA, IQTNNNPFQVPIEEQR). To clarify the
ambiguous chromatogram, a combination of various transitions was used.
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Quantification of TFs in Whole Cell Lysates

We quantified 36 peptides representing 28 endogenous TFs in
8 lung cancer-related cell lines. Out of 288 MRM measure-
ments (36 peptides × 8 cell lines), 241 were successfully
quantitated (Figure 5, Table 2, and Figure S5, Table S2,
Supporting Information). The measurements showed an
average CV of 9.7%, a median CV of 7.4%, and a minimum
CV of 0.2%. The minimum concentration was 15.1 amol/μg
with a CV of 69.5% (cell line: A549, gene name: KLF4, peptide
sequence: TTPTLGLEEVLSSR), and the maximum concen-
tration was 311.96 fmol/μg with a CV of 0.9% (H69AR, ENO1,
YISPDQLADLYK). The minimum concentration with CV ≤
20% was 19.4 amol/μg with a CV of 6.3% (A549, STAT2,
EVLQSLPLTEIIR). Of 241 MRM measurements, 221 (91.7%)
showed CVs of ≤20%, 149 (61.8%) had CVs of ≤10%, and 96
(39.8%) had CVs of ≤5%.
The amounts of target TFs varied depending on the type of

cell lines and the susceptibility to DOX. CDKN2A (LPVD-

LAEELGHR) could be quantified only in H69 and H69AR cell
lines, while EGR2 (SLDLPYPSSFAPVSAPR) could not be
quantified in these cell lines (Figure S5, Supporting
Information). In case of CSDA, the concentration could be
determined in the DOX-resistant cell line H69AR but not in
H69 (Figure 6). The peak for the endogenous peptide
(GAEAANVTGPDGVPVEGSR, red trace in Figure 8) in
H69AR was clearly detected and estimated to be 1.9 fmol/μg,
but the peak for this peptide in H69 was very low, close to the
sample noise level. We also found that the detection of
CTNNB1 was also cell-dependent. In H520 cells, the amount
of CTNNB1 (LLNDEDQVVVNK) was characteristically
higher (21.2 fmol/μg) than the other cell lines (1.7 to 3.6
fmol/μg). This characteristic was clearly shown with the other
peptides of CTNNB1, although the numerical values were
slightly different between peptides (Figure 5).
For the quantitation of the target proteins, we used one to

three proteotypic peptides of a TF. A highly intense transition
of each peptide was used to accurately quantify the individual
proteotypic peptides. For ENO1, KLF4, PURA, RELA, and
SMAD4, which were quantified on the basis of two or three
peptides, the protein concentrations varied depending on the
peptide used for measurement, as did that of CTNNB1.
However, the concentration difference for a selected peptide
between cell lines was similar. For example, three peptides of
CTNNB1 and two peptides of ENO1 showed similar
concentration differences in each cell line (Figure S5,
Supporting Information).

Correlation between Protein and mRNA Abundances in
Lung Cancer Cells

MRM measurements were compared with the gene expression
data of TFs in the six lung cancer cell lines (A549, H460,
H1299, H23, Calu-1 and H520) obtained from the gene
expression data set (accession number = GSE833232 in GEO
database). Among the 22 peptides from 16 proteins quantified
in all six cell lines, FGGNPGGFGNQGGFGNSR from
TARDBP showed a linear relationship between protein and
transcript abundances (Figure 7A) while SSQPLASK from
HMGA1 showed a nonlinear relationship (Figure 7B).
However, most of the peptides showed no significant
correlation with their mRNA levels, as has been previously
described for other higher organisms.67 On the basis of the
correlation, these peptides can be categorized into the following
two groups: (1) seven proteins (SMAD4, PTTG1, SMAD4,
LZTR1, SMAD4, STAT2, and STAT1) for which seven
peptides and their mRNAs were both detected, showed no
significant correlation between the levels of mRNAs and
proteins (a representative peptide, EVLQSLPLTEIIR from
STAT2, is shown in Figure 7C); and (2) 10 proteins (RELA,
CTNNB1, EGR2, CSDA, ENO1, FOXO3, CBL, PAX5, PURA,
and STAT3) for which 15 peptides were detected while
mRNAs were not detected, thereby showing no correlation (a
representative peptide, YISPDQLADLYK from ENO1, is
shown in Figure 7D). These results highlight the sensitivity
of the MRM assays. The protein-per-mRNA ratios are different
for individual genes and also vary under different conditions.
Thus, the discrepancy between mRNA and protein abundances
further indicates that the precise abundances of TFs measured
using multiplexed MRM assays is useful for understanding their
functions, as described below.

Figure 4. Representative calibration curves. (A) A dilution series of the
SIS peptides for CBL GTEPIVVDPFDPR (y10++), and PURA
FFFDVGSNK (y7+) were spiked into a pooled sample matrix. Insets
show the linear range of the curves with R2 ≥ 0.99 and CV ≤ 20% to
determine the LLOQ. (B) Cumulative analysis of the LLOQs for 36
peptides.
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TFs Related to DOX Resistance in Lung Cancer Cells

The MRM assays were used to measure the abundances of TFs
in order to investigate DOX resistance in small cell lung cancer
(SCLC). Using the MRM assays, 28 peptides from 21 proteins
were quantified in DOX-sensitive (H69) and -resistant cells
(H69AR) before and at three different times (1, 6, and 8 h)
after DOX treatment. In these experiments, we identified 18
peptides from 14 differentially expressed TFs (DETFs; P <
0.05). Nine (12 peptides) of 14 DETFs were differentially
expressed at basal level (T = 0), while the other five DETFs
were differentially expressed at least once at T ≥ 1 (Table S4
and Figure S7, Supporting Information). Group 1 contained
STAT1, ENO1, CSDA, and CDKN2A, which were up-
regulated in H69AR at T = 0. Group 2 contained SMAD4,
FOXO3, STAT3, HMGA1, and PTTG1, which were down-
regulated at T = 0. Group 3 contained CBL, LZTR1, and
STAT6, which were up-regulated at T ≥ 1. Group 4 contained
CTNNB1 and RELA, which were down-regulated at T ≥ 1.
Interestingly, many of the 14 DETFs have been previously
reported to be associated with resistance of various drugs,
including DOX (Table S5, Supporting Information). Specifi-
cally, STAT168,69 and SMAD470 were associated with resistance
to DOX. These different expression patterns over time in the
four groups of 14 DETFs indicate that they are involved in
distinct pathways defining DOX resistance in SCLC.

Potential Association of the DETFs with DOX Resistance in
SCLC

To investigate the possible association of the 14 DETFs with
DOX resistance, we first identified 2144 DEGs between H69
and H69AR SCLC cells, 1022 up-regulated and 1124 down-
regulated genes in H69AR cells (Table S6, Supporting
Information). We then examined how many of the DEGs
could be regulated by the 14 DETFs. According to TF−target
information in MetaCore, 211 (21%; P < 10−5) of the 1022 up-

regulated genes and 212 (19%; P < 10−5) of the 1124 down-
regulated genes in H69AR are targets of the 14 DETFs (Figure
8A; Table S6, Supporting Information). Next, we examined
which cellular processes associated with DOX resistance can be
regulated by the 14 DETFs. We first identified DOX resistance-
related cellular processes as the GOBPs represented (P < 0.05)
by 1022 up-regulated and 1124 down-regulated genes in
H69AR. Interestingly, many of these DOX resistance-related
GOBPs were also represented by 423 targets of the 14 DETFs
(Figure 8B; Table S7, Supporting Information), including drug-
resistance related signaling pathways (MAPKKK, JAK-STAT,
Wnt, and TGF-beta signaling pathways; Table S5, Supporting
Information). We then examined which TFs regulate these
GOBPs by counting how many of the genes involved in the
GOBPs are regulated by the DETFs. Among the DETFs, RELA
in the MAPKKK cascade, STAT1, 3, 6 in the JAK-STAT
cascade, and CTNNB1 and SMAD4 in the TGF-beta signaling
pathway are the major regulators of the genes associated with
DOX resistance (Figure 8C). We then generated a network
model that delineates the relationships of the major DETFs and
their targets involved in the GOBPs (Figure 8D). The dense
interactions among the genes involved in the GOBPs indicate
that the major DETFs collectively regulate DOX resistance-
related cellular processes. Therefore, the results support the
utility of the proposed multiplexed MRM assays.

■ DISCUSSION
Lung cancer-related TFs were quantified by MRM without
prior affinity depletion or subfractionation of cell lysates. Since
they are largely present in low abundance, we carefully designed
experimental procedures including selection of Q1 and Q3 and
optimization of MRM transitions. Special consideration was
made for the selection of the m/z values of the product ions.
We first investigated peptides with prolines positioned at P2
and P3 since some of these ions had highly sensitive MRM

Figure 5. Quantitative analysis of 241 proteotypic peptides in 8 cell lines. Optimized instrumental parameters for the most intense three transitions
of the peptides were used for the SIS peptides. A scheduled MRM algorism was used for simultaneous MRM measurement of 36 peptides in a single
run. The most intense transitions for peptides were used to determine the concentrations. The average concentrations of triplicate MRM
measurements for individual target are shown with standard error bars. The concentrations for each of the 8 cell lines are presented separately in
Figure S5 (Supporting Information).
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signals. In our study, 81 (28.8%) ions out of the 281
predominant ions showed the high peak intensities even
though their m/z values were lower than the precursor m/z
values; 17.1% were doubly or triply charged product ions, 3.2%
were b-ions, 6.3% were ions produced by fragmentation at the
N-terminal side of proline, and 2.1% were other y-ions
(Supporting Information). For instance, GTEPIVVDPFDPR
(precursor = m/z 721.6), a proteotypic peptide of CBL, showed
relative ion intensities of y10++ (m/z 578.0) and y5 (m/z
631.3) of 100 and 69% compared to 62.8% for y7 (m/z 845.5),
even though y7 had a higher m/z than the precursor ion. Also,
the y5 (m/z 561.4) ion from AELAATLGLSER (precursor =
m/z 616.0) of CDX2 showed nearly double the intensity of the
y8 ion (m/z 846.5). In another case, the y3 from EGPGTPTR
of ZBTB16 showed extremely high intensity compared to the
other transitions.
Assigning tandem MS data, SEQUEST and MASCOT-like

search engines can provide qualitative information in a shotgun

approach. Likewise, qualitative analysis was possible with the
LIT mode of the hybrid triple quadrupole. Also, by using
peptide retention time prediction algorithms such as those in
MaRiMba and Skyline, it was possible to identify a target peak
even below 400 m/z even though the peak significantly
overlapped with background noise. However, when the
concentration of analytes was lowered, the identification was
difficult and some selected transitions overlapped with noise
peaks, generating a different transition ranking compared to the
original transition peak rank order. In order to resolve this
problem, various transitions were used for the identification,
and transition peak rank order was investigated (Figure 3C). If
multiple transitions were not available because of a single highly
intense transition from a proline-containing peptide, the MRM
data were confirmed by creating a dilution series of from the
standard target peptide since only transitions from the target
peptide should respond to the added standard (Figure 3).

Table 2. Experimental MRM Conditions for 36 Quantified Proteotypic Peptides Representing 28 Transcription Factorsg

lighta heavyb
charge
state

gene name peptide sequence Q1 Q3 Q1 Q3 Q1 Q3 ion DPc CEd CXPe avg tR
f

BCL3 ALLDSAAPGTLDLEAR 807.187 971.400 812.191 981.409 2 1 y9 151 35 44 36.45
CBL GTEPIVVDPFDPR 721.591 578.000 726.595 583.004 2 2 y10 146 25 28 38
CDKN2A LPVDLAEELGHR 450.306 618.500 453.642 623.504 3 2 y11 101 19 28 34.48
CSDA GAEAANVTGPDGVPVEGSR 891.960 644.400 896.964 654.409 2 1 y6 161 39 30 25.81
CTNNB1 LHYGLPVVVK 375.555 541.400 378.226 549.414 3 1 y5 76 13 24 32.04

AIPELTK 386.332 587.400 390.339 595.414 2 1 y5 81 13 26 24.47
LLNDEDQVVVNK 693.480 360.200 697.487 368.214 2 1 y3 86 29 18 26.31

EGR2 SLDLPYPSSFAPVSAPR 902.682 688.400 907.686 693.404 2 2 y13 131 33 32 40.43
ENO1 GNPTVEVDLFTSK 704.003 618.500 708.010 622.507 2 2 y11 166 27 28 35.63

YISPDQLADLYK 713.584 575.400 717.591 579.407 2 2 y10 121 29 24 38.02
FOXO3 SSSFPYTTK 509.448 609.400 513.455 617.414 2 1 y5 76 23 28 23.78
HMGA1 SSQPLASK 409.222 515.400 413.229 523.414 2 1 y5 86 17 22 9.41
JUNB AENAGLSSTAGLLR 680.651 804.500 685.655 814.509 2 1 y8 136 29 36 31.11
KLF4 TTPTLGLEEVLSSR 752.023 650.900 757.027 655.904 2 2 y12 106 31 30 40.06

ASLSAPGSEYGSPSVISVSK 962.200 747.500 966.207 751.507 2 2 y15 146 41 36 31.76
LZTR1 AFTTGTPPAPR 558.370 537.400 563.374 547.409 2 1 y5 126 23 26 23.13
MBD1 AVDPGLPSVK 491.800 697.500 495.807 705.514 2 1 y7 96 21 30 26.61
MECOM AIASIAEK 401.784 618.400 405.791 626.414 2 1 y6 91 15 28 20.41
NFIB SGVFNVSELVR 603.952 816.500 608.956 826.509 2 1 y7 111 25 36 38.45
NR2F2 SQYPNQPTR 545.846 712.300 550.850 722.309 2 1 y6 106 25 34 16.58
PAX5 GAAPPAAATAYDR 616.416 516.800 621.420 521.804 2 2 y10 101 25 24 21.97
PTTG1 SSVPASDDAYPEIEK 804.541 668.000 808.548 672.007 2 2 y12 126 31 32 26.85
PURA IAEVGAGGNK 458.243 503.300 462.250 511.314 2 1 y6 86 21 24 14.67

FFFDVGSNK 530.629 766.400 534.636 774.414 2 1 y7 111 23 32 36.16
RB1 TLQTDSIDSFETQR 821.187 882.400 826.191 892.409 2 1 y7 146 37 38 30.85
RELA LPPVLSHPIFDNR 502.709 465.100 506.045 468.436 3 3 y12 101 19 20 35.6

IQTNNNPFQVPIEEQR 964.142 771.400 969.146 781.409 2 1 y6 171 43 34 34.51
SMAD4 GFPHVIYAR 353.972 621.500 357.308 631.509 3 1 y5 66 17 28 28.43

GEGDVWVR 459.298 731.400 464.302 741.409 2 1 y6 101 19 34 25.28
IYPSAYIK 477.850 678.500 481.857 686.514 2 1 y6 91 15 30 28.03

STAT1 ELSAVTFPDIIR 681.035 861.500 686.039 871.509 2 1 y7 121 29 34 41.42
STAT2 EVLQSLPLTEIIR 756.234 841.500 761.238 851.509 2 1 y7 171 31 42 43.88
STAT3 GLSIEQLTTLAEK 702.007 1032.400 706.014 1040.414 2 1 y9 131 29 48 40.52
STAT6 GYVPATIK 424.840 529.300 428.847 537.314 2 1 y5 86 15 24 24.48
TARDBP FGGNPGGFGNQGGFGNSR 864.039 676.500 869.043 681.504 2 2 y14 111 39 35 29.16
TBX3 HSPATISSSTR 381.616 537.300 384.952 547.309 3 1 y5 61 17 24 14.7

aLight peptides represent endogenous peptides in cell lines. bHeavy peptides represent SIS peptides. cDeclustering potential. dCollisional energy.
eCollisional cell exit potential. fAverage retention times were applied for scheduled MRM. gExperimental conditions for all 281 peptides can be found
in the Supporting Information.
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We found it necessary to optimize the transitions and
experimental parameters empirically.14,18 Recently, many MRM
softwares and web-based programs have become available,
where all transitions and parameters can be collected from
shotgun-based data or prediction algorithm. By using them, one
should be able to simplify a MRM workflow and save a lot time.
However, this approach might be limited to only high- and
medium-abundance targets. For low-abundance targets, these
parameters should be carefully optimized since optimal
transitions and parameters might be slightly different from
those given by the programs (see Figure S1 and Table S3,
Supporting Information), and using the parameters from the
programs could result in loss of instrumental sensitivity.
Consistent with this conclusion, a recent report has shown
that the MRM results applying the parameters are not identical
for different models and instrument vendors.20 We attribute our
improved instrumental sensitivity to empirical optimization of
our TF targets. The LLOQs are dependent on the nature of the
selected peptides and the sample matrix used, and most of the
LLOQs that we found for cell lysates were lower than those
found previously published papers using plasma.15,18 For
plasma, Kuzyk et al. reported 0.015 fmol (7.5% CV) to 168
fmol (15% CV) within CV of 20%,18 and Whiteaker et al.
determined 0.2 fmol (6.6% CV) to 261.7 fmol (10.6% CV) by
using the blank measurement method.15 In this study on cell
lysates, a simpler matrix, the LLOQs were between 0.065 and
1.9 fmol in a pooled sample. In A549, STAT2 could be
quantified as low as 19.4 amol/μg with a CV of 6.3%. Usually,

Figure 6.MRM analysis of CSDA (GAEAANVTGPDGVPVEGSR) in
H69 (A) and H69AR (B). The y6 ions for the endogenous (red) and
SIS peptides (blue) were monitored under identical experimental
conditions.

Figure 7. Correlation between protein and mRNA abundances in six SCLC cell lines. Quantification of four peptides and the expression levels of the
corresponding genes were compared in scatter plots. In the scatter plots, the dotted line represents a linear (A, C, and D) and a logarithmic fit (B).
R2 and p-values denote goodness-of-fits.
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STAT2 quantification in MS requires an additional enrichment
step or fractionation step to concentrate the target.71,72

For TFs quantified with two or three peptides, protein
concentrations varied depending on the peptide used for

measurement. Theoretically, all the peptide concentrations
should be identical and represent the concentration of the
source protein in a sample. However, there seems to be an
influence of enzymatic digestion efficiency during sample

Figure 8. Potential associations of DETFs with DOX resistance. (A) The number of targets of the 14 DETFs among the DEGs (up- and down-
regulated genes in H69AR cells, compared to H69 cells). (B) GOBPs represented by up- (up) and down-regulated genes (down) in H69AR and
target DEGs of the 14 DETFs (DETF). Color bar, log10-P from the analysis for identification of GOBPs represented by the DEGs. (C) The number
of targets of each DETF involved in the GOBPs. Color bar, the ratio of the number of targets of each DETF to the number of genes with the GOBP.
(D) A network model showing the relationships between the DETFs and their targets. The nodes with same GOBPs were grouped into the same
modules, each of which was named according to the corresponding GOBP. The red and green edges represent up-regulated TFs−target and down-
regulated TFs−target interactions, respectively. Gray edges are protein−protein interactions between DETF targets. Red and green node colors
represent up- and down-regulation of the genes in H69AR cells. Diamond and circle nodes denote DETF and their target genes of transcriptional
regulation. Red, green, and blue background colors denote the GOBPs represented by (1) up-regulated genes in H69AR and targets of the DETFs,
(2) down-regulated genes in H69AR and targets of the DETFs, and (3) up- and down-regulated genes as well as targets of DETFs, respectively.
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preparation or ionization effects in MS.73−75 We also
investigated, using a larger protein database, UniProt (version
2012_06), whether the peptides might represent different
isoforms of a protein or contain known posttranslational
modification sites or natural variations. Neither isoforms of a
single protein nor known amino acid variations were found in
the peptides for CTNNB1, KLF4, PURA, RELA and SMAD4.
Thus, it seems that the observed differences in peptide levels
are intrinsic to each protein. Nevertheless, the concentration
difference of a specific selected peptide between cell lines was
similar. Interestingly, the amount of the N-truncated isoform of
ENO1 (GNPTVEVDLFTSK) was significantly different from
the sequence YISPDQLADLYK, which was contained in both
the truncated isoform and the natural form (Figures S5 and S6,
Supporting Information). This difference is presumably due to
differing amounts of the N-truncated form in the different cell
lines.
The integrative analysis of MRM measurements and mRNA

data confirmed the utility of the multiplexed MRM assays. This
analysis provided a list of potential TFs that regulate the genes
involved in drug resistance-related signaling pathways and cell
differentiation processes, which are associated with DOX
resistance in H69AR SCLC cells. Among these TFs, STAT1
and SMAD4 were previously reported to be closely involved in
DOX resistance.68,70 Moreover, many TFs and their targets
involved in DOX resistance-related processes are linked to each
other. These data collectively suggest that modulation of these
TFs can control DOX resistance-related processes, which can
be applied to identify a therapeutic option to treat SCLC
patients showing DOX resistance. Specifically, the major
downstream TFs (RELA, STAT1, 3, 6, CTNNB1, and
SMAD4) of MAPK, JAK-STAT, and TGF-beta signaling
pathways could be modulated to control DOX resistance in
SCLC patients. Thus, mechanisms underlying the roles of the
major TFs in DOX resistance can be the subject of detailed
functional studies.
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