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ABSTRACT

Estrogen-related receptor y (ERRy) is a major positive regulator of hepatic
gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin
in the fed state, but whether post-translational modification (PTM) alters its gluconeogenic
activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount
of glucose into the hexosamine biosynthetic pathway (HBP) leading to protein O-
GlcNAcylation. Here we demonstrate that ERRy is O-GIcNAcylated by O-GlcNAc transferase
(OGT) in the fasted state. This stabilizes the protein by inhibiting proteasome mediated protein
degradation, increasing ERRy recruitment to gluconeogenic gene promoters. Mass spectrometry
identifies two serine residues (S317, S319) present in the ERRy ligand binding domain (LBD)
that are O-GIlcNAcylated. Mutation of these residues destabilizes ERRy protein, and blocks the
ability of ERRy to induce gluconeogenesis in vivo. The impact of this pathway on
gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-
GlcNAcylated ERRy by overexpressing the deglycosylating enzyme O-GlcNAcase (OGA)
decreases ERRy dependent glucose production in fasted mice. We conclude that O-

GlcNAcylation of ERRY serves as a major signal to promote hepatic gluconeogenesis.
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INTRODUCTION

O-GlcNAcylation works as a nutrient sensor in the liver to maintain energy homeostasis
in response to varying nutrient flux [1]. O-GlcNAcylation is extensively linked with glucose
metabolism in liver. L-glutamine fructose-6-phosphate amidotransferase (GFAT) overexpression
leads to peripheral insulin resistance [2], [3]. Transgenic mice overexpressing OGT in skeletal
muscle and fat exhibit elevated circulating insulin levels and insulin resistance [4]. IRS1/IRS2 of
insulin signaling is O-GlcNAcylated [5], and O-GlcNAcylation has been shown to be a negative
regulator of insulin signaling [6]. O-GIcNAcylation of FOXO1, CRTC2 and PGC-1a modulates
expression of gluconeogenic genes [7], [8], [9], [10]. Chronic increase in O-GlcNAcylation
levels of PDX1 and NeuroD1 may contribute to hyperinsulinemia in Type 2 diabetes [11], [12].
Thus, by being intimately intertwined with metabolism, HBP and its end product O-GlcNAc link

transcriptional processes to cellular glucose metabolism and insulin resistance.

Estrogen-related receptors (ERRs) are members of the NR3B subfamily of nuclear
receptors, which include ERRa, ERRf and ERRy. ERRY is primarily expressed in heart, brain,
kidney, pancreas and liver tissues and is induced during fasting in murine liver [13], [14], [15].
ERRY plays an important role in the regulation of glucose, lipid, alcohol and iron metabolism in
mouse liver [16], [17]. Hepatic ERRYy expression is induced in fasting and the diabetic state, and
causes insulin resistance and glucose intolerance [18]. Induction of hepatic ERRy impairs insulin
signaling through diacylglycerol-mediated protein kinase € activation [19], suggesting that ERRy
transcriptional activity could be involved in insulin action to maintain glucose homeostasis.
Recently our laboratory reported that insulin-dependent phosphorylation of ERRy alters its

transcriptional activity to suppress hepatic gluconeogenesis in the fed state [20].
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PGC-1la is a transcriptional co-activator involved in hepatic glucose metabolism. Fasting
induces hepatic PGC-1a expression that directly interacts with transcription factors including
HNF4a, FOXOI, and GR to increase the expression of gluconeogenic genes [21] [22]. PGC-1a
overexpression leads to increased expression of G6Pase and PEPCK, key enzymes in the hepatic
gluconeogenesis. Conversely, knockdown or knockout of PGC-1a results in lower blood glucose

levels as a result of reduced gluconeogenesis.

As insulin-dependent PTM regulates the transcriptional activity of ERRY in the fed state,
herein we investigated whether fasting-dependent activation of the transcriptional activity of
ERRy involves O-GlcNAcylation. We demonstrate that the fasting condition triggers O-
GlcNAcylation of ERRYy that results in protein stabilization. O-GlcNAcylation of ERRy by OGT
decreases its ubiquitination (Ub), and cooperatively upregulates gluconeogenesis. In contrast, the
fed condition decreases O-GlcNAcylation of ERRYy, resulting in ubiquitin-mediated protein
degradation. Overall, our study describes how O-GlcNAcylation modulates gluconeogenesis via

ERRy.
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RESEARCH DESIGN AND METHODS
Animal Experiments

Male 8-week-old C57BL/6] mice, maintained at the Korea Research Institute of
Bioscience and Biotechnology (KRIBB) were fed either a high fat diet (HFD) (D12492;
Research Diets, New Brunswick, NJ) or a normal chow diet for 12 weeks. At the end of 12
weeks mice were sacrificed and liver tissue was utilized for identification of O-GlcNAcylation of
ERRY. ob/ob and db/db mice (7-12 weeks old; Charles River Laboratories) were maintained at
KRIBB in an animal facility with ad /ibitum access to water and a standard laboratory diet. Liver
tissue was utilized for identification of O-GlcNAcylation of ERRy. Male 7-week old C57BL/6J
mice (The Jackson Laboratory, Bar Harbor, Maine, USA) were obtained from Ochang Branch
Institute, KRIBB. After two weeks, adenoviruses (Ad-GFP, Ad-wt ERRy and Ad-
Ser317Ala+Ser319Ala ERRy; 5.9 x 10° plaque-forming units/mouse) were delivered by tail-vein
injection into mice. Glucose tolerance test was performed at day 5 after a tail-vein injection of
adenoviruses. Briefly, mice fasted 16 h were injected intraperitoneally with 1 g/kg glucose, and
blood glucose was measured in tail-vein blood using a blood glucose meter and test trips (Accu-
Chek Aviva meter system; Roche Diagnostics, Indianapolis, IN, USA). All mice were
acclimatized to a 12 h light-dark cycle at 22+2°C with free access to food and water in a specific
pathogen-free facility. All animal experiments were approved and performed by the Institutional

Animal Care and Use Committee of KRIBB.

Glucose Output Assay
Glucose production from primary mouse hepatocytes was measured using a colorimetric

glucose oxidase assay kit according to the manufacturer’s protocol. Briefly, after the
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experimental time period as indicated, the cells were washed three times with phosphate-
buffered saline. Then the cells were incubated for 3 h at 37 °C, 5% CO,, in glucose production
buffer (glucose-free DMEM, pH 7.4, containing 20 mmol/liter sodium lactate, 1 mmol/liter
sodium pyruvate, and 15 mmol/liter HEPES, without phenol red), and the glucose assays were

performed.

Glucagon Assay
Blood glucagon levels were measured using mouse glucagon EIA kit (Ray Biotech, Inc.)

following manufacturer’s protocol.

Cell culture and reagents

Primary hepatocytes were isolated from C57BL/6J mice (male, 20-30 g) by collagenase
perfusion [23] and seeded with Medium 199 (Cellgro). After 3—6 h of attachment, cells were
infected with the indicated adenoviruses for overexpression or treated with various chemicals as
indicated. HEK 293T and AMLI12 cells were maintained as described previously [24]. Transient
transfection was performed using Lipofectamine 2000 (Invitrogen) or SuperFect (Qiagen,
Hilden, Germany) according to the manufacturers' instructions. B-N-Acetyl-D-glucosamine
(GIeN), 6-diazo-5-oxo-L-norleucine (DON), glucagon, insulin, cycloheximide (CHX), ANTI-
FLAG M2 affinity gel, glucose oxidase assay kit and streptozotocin (STZ) were purchased from
SIGMA. MG-132 protease inhibitors were purchased from Calbiochem. Express Protein
Labeling Mix [*°S] (NEG072002MC) was purchased from Perkin Elmer. Mouse Glucagon EIA
kit (EIAM-GLU) was purchased from Ray Biotech, Inc. Antibodies were purchased as follows :

O-GIcNAc from Covance, a-tubulin from Abfrontier, ERRY from Perseus Proteomix, OGT from
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Abcam, FLAG, Anti-FLAG M2 and HA from Cell Signaling, and G6Pase, Mdm2, ubiquitin,

Gal4, PGC-1a and PEPCK from Santa Cruz Biotechnology.

Plasmid and adenovirus vector constructs

Expression vectors for HA-ERRy, FLAG-ERRy, HA-PGC-1a and Sft4-luc containing
three copies of the ERRy binding site were described previously [25]. HA-ERRa was described
previously [26]. FLAG-human OGT was constructed by inserting the full PCR fragment of the
open reading frame into the Notl/Sall sites of the p3XFLAG-CMV-7.1 vector. FLAG-human
OGA was constructed by inserting the full PCR fragment of the open reading frame into the
Bgl2/Sall sites of the pPFLAG-CMV-7.1 vector. FLAG-mutant ERRy’s (Ser317Ala, Ser319Ala,
Ser317Ala+Ser319Ala) were constructed using wild-type ERRy as template by Quick Change
Lightning Site-Directed Mutagenesis kit from Agilent Technologies. Gal4-DBD and Gal4-tk-Luc
were described previously [27]. Briefly, Gal4-ERRy-LBD is a fusion protein consisting of the
Gal4 DNA binding domain (Gal4-DBD; amino acids 1-147) and ERRy ligand binding domain
(ERRy-LBD; amino acids 189-458). This fusion protein activates transcription of a reporter
construct (Gal4-tk-luc) containing five GAL4 binding sites (upstream activator sequence)
upstream of the firefly luciferase gene in the pGL2-Promoter. Gal4-DBD-Ser317Ala ERRy,
Gal4-DBD-Ser319Ala ERRy, and Gal4-DBD-Ser317Ala+Ser319Ala ERRy were constructed
using Gal4-DBD-wild-type ERRy as template by Quick Change Lightning Site-Directed
Mutagenesis kit from Agilent Technologies. wtPEPCK-luc, and ERRE mutant PEPCK-luc were
described previously [28]. Adenoviruses expressing unspecific (US) shRNA, shERRYy, control
GFP, and ERRy were described previously [28]. Adenovirus OGT (Ad-OGT) encoding human

OGT gene, adenovirus OGA (Ad-OGA) encoding human OGA gene, and adenovirus
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Ser317Ala+Ser319Ala ERRy (Ad-Ser317Ala+Ser319Ala ERRy) were generated with the pAd-
easy system as described previously [29]. All viruses were purified by using CsCl gradient

protocol.

Hepatic FLAG-ERRy complex purification and mapping of O-GIcNAc site using mass
spectrometry

Overexpressed wild-type FLAG-ERRY proteins from mouse liver were purified using
FLAG-M2 agarose and subjected to SDS—PAGE. Purified protein was digested with trypsin
(Promega, Madison, WI) (25 ng/ul) for 16 h at 37°C. After in gel digestion, tryptic peptides were
separated by online reversed-phase chromatography using a Thermo Scientific Eazy nano LC II
autosampler with a reversed-phase peptide trap EASY-Column (100 pm inner diameter, 2 cm
length) and a reversed-phase analytical EASY-Column (75 pm inner diameter, 10 cm length, 3
um particle size, both Thermo Scientific). Electrospray ionization was performed using a 30 pm
(i.d.) nano-bore stainless steel online emitter (Thermo Scientific) and a voltage set at 2.6 V., at a
flow rate of 300 nl/min. The chromatography system was coupled on-line with an LTQ Velos
Orbitrap mass spectrometer. Protein identification was accomplished utilizing the Proteome
Discoverer v1.3 database search engine (Thermo scientific) and searches were performed against
IPI.Humanv3.87 FASTA database or ERRy FASTA database. A fragment mass tolerance of 1.2

Da, peptide mass tolerance of 25 ppm, and maximum missed cleavage of 2 were set.

Real time quantitative RT-PCR (qPCR) analysis
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Total RNA was isolated using Trizol reagent, cDNA was synthesized using a reverse
transcriptase kit (Intron Biotechnology, Inc.), and qPCR was performed with SYBR green PCR

kit (Enzynomics). The amount of mRNA for each gene was normalized to that of actin mRNA.

ChIP assay

Nuclear isolation of primary hepatocytes and cross-linking of protein to DNA were
performed as described previously [28]. After sonication, soluble chromatin was subjected to
immunoprecipitation using anti-ERRy antibody. DNA was recovered by phenol/chloroform

extraction and analyzed by PCR using primers against relevant promoters. Primer sequences:

mouse PEPCK1 promoter forward: 5°- CTAGCCAGCTTTGCCTGACT-3> and reverse: 5°-

GGGTCCCCACGACCTTCCA A -3°.

Western Blot Analysis

Whole cell extracts were prepared using RIPA buffer (50 mM Tris at pH 7.5, 150 mM
NaCl, 1% NP-40, 5SmM EDTA). Proteins from whole cell lysates were separated by 10% SDS-
PAGE and then transferred to nitrocellulose membranes. The membranes were probed with
different antibodies. Immunoreactive proteins were visualized using an Amersham Biosciences

ECL kit (GE Healthcare) according to the manufacturer's instructions.

In Vivo Imaging
C57BL/6J mice were infected with respective viruses via tail vein injections. Four days
post injection, mice were fasted for 16 h and imaged using an IVIS Lumina II imaging system

(Caliper Life Sciences, Hopkinton, MA, USA) as described previously [28].

10
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Confocal Microscopy
At 24 h after transfection, the cells were fixed with 2% formaldehyde, immunostained
and subjected to observation by confocal microscopy using a laser-scanning confocal microscope

(Olympus Corp., Lake Success, NY).

Pulse-chase experiment

AMLI12 cells were transfected with FLAG-wt ERRy, FLAG-S317A ERRy, FLAG-
S319A ERRy and FLAG-S317A+S319A ERRYy and incubated in methionine and cystine-free
medium for 2 h. Trans-label mixture (Perkin Elmer) containing 3°S-methionine was added for 30
min and then cells were cultured in normal medium up to 3 h. FLAG-ERRy was
immunoprecipitated with M2 antibody in RIPA buffer and radioactive FLAG-ERRy was

detected by autoradiography.

Statistical Analyses
All values are expressed as means + s.e.m. The significance between mean values was

evaluated by two-tailed Student's ¢ test.
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RESULTS
ERRY is modified by O-GlcNAc

ERRY is a key positive regulator of hepatic gluconeogenesis [28]. ERRy phosphorylation
by PKB/Akt also contributes to insulin-mediated inhibition of hepatic gluconeogenesis [20].
Many factors that regulate hepatic gluconeogenesis are O-GlcNAcylated in various conditions
[30], [7], [31]. Hence we sought to determine whether ERRY is modified by O-GlcNAc. HBP
intermediate GIcN treatment significantly increased ERRy O-GIcNAcylation levels as well as
ERRYy protein content in a dose dependent manner (Figure 1A). Consistent with a rise in ERRy
protein levels, GlcN treatment significantly reduced ERRy ubiquitination levels and increased
ERRy transcriptional activity (Supplementary figure 1A-B). Glucose (Glc) flux through HBP
regulates O-GlcNAcylation [1]. Therefore, to determine whether glucose could directly affect O-
GlcNAcylation of ERRy, mouse primary hepatocytes (MPH) were treated with 5 and 25 mM
glucose. High glucose significantly increased O-GlcNAcylation of ERRy along with ERRy
protein levels (Figure 1B). This was further confirmed when OGT co-transfection markedly
enhanced O-GlcNAcylation of ERRy (Figure 1C). Since ERRa and ERRy are both associated
with hepatic glucose metabolism, we also examined whether OGT overexpression could lead to
ERRa O-GlcNAcylation. Unlike ERRy, O-GIcNAcylation was not detected for ERRa (Figure

1D).

O-GlcNAcylation is linked with protein stability [30], [31], [32], [33]. From our results
(Figure 1A-B), we speculated that O-GlcNAcylation could stabilize ERRy by decreasing protein
degradation. To test this, HEK 293T cells were co-transfected with ERRy and OGA or OGT

expression vectors followed by MG-132 treatment to inhibit proteasome-mediated protein

12
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degradation. ERRy ubiquitination levels were significantly raised and O-GlcNAcylation levels
were decreased in presence of OGA, whereas OGT had an entirely opposite effect, suggesting
that OGT triggers ERRy O-GlcNAcylation that inhibits ERRy ubiquitination and stabilizes it
(Figure 1E). Next, to examine the functional implications of O-GlcNAcylation, reporter gene
assay with transient transfection was carried out in the 293T cell line. ERRy significantly
enhanced the Sft4-luc reporter activity which was further augmented in presence of OGT. OGA
had an inverse effect to that of OGT and significantly reduced ERRy transcriptional activity.
However, ERRa could not markedly activate the reporter gene even in presence of OGT (Figure
1F). Activation of the Gal4-tk-luc reporter gene by Gal4-ERRy-LBD was significantly
augmented by OGT, whereas OGA significantly repressed it, indicating that O-GlcNAcylation of
ERRY might occur in its LBD (Figurel G). Overall, these results suggest that ERRYy is subject to
O-GlcNAcylation which in turn increases protein stability by decreasing ubiquitin mediated

protein degradation and also enhances ERRY transcriptional activity.

Glucagon increases O-GlcNAcylation of ERRY

Hepatic ERRy expression is increased by fasting-dependent activation of the CREB-
CRTC2 pathway [28], [18]. Hence we sought to determine whether fasting-dependent increase in
ERRy expression is associated with O-GlcNAcylation. Fasting significantly enhanced O-
GlcNAcylation of ERRy compared to the fed state. This stands in contrast to ERRy
ubiquitination levels which were higher in the fed condition than the fasting condition,
suggesting that O-GlcNAcylation mediates ERRYy stability in the fasting condition (Figure 2A).
To confirm that O-GlcNAcylation mediates ERRy stability in the fasting condition, we

overexpressed OGA in this condition. Overexpression of OGA significantly reduced O-

13
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GlcNAcylation of ERRy and simultaneously increased ubiquitination of ERRYy, resulting in
lowering of ERRy abundance, unambiguously establishing that ERRYy stability is governed by O-
GlcNAcylation in the fasting condition (Figure 2B). Increased protein stability is associated with
decreased interaction between protein and E3 ubiquitin-ligases such as Mdm?2 [32]. We observed
that fasting increased OGT-ERRYy interactions in a time dependent manner, resulting in enhanced
O-GlcNAcylation and reduced Mdm2-ERRY interactions in mice (Figure 2C). The binding of
OGT and ERRy was reduced, but the levels of ERRy O-GIcNAcylation were still intensified
after 3 h of fasting (Figure 2C). To clarify this, we tested whether the interactions between ERRy
and OGT or OGA might be dynamically altered during the fasting period. The interaction
between ERRy and OGT increased in a fasting time manner, reaching a peak between 3-6 h and
then declining, whereas the interaction between ERRy and OGA decreased in a fasting time
manner (Supplementary figure 1C), suggesting that in the fed state OGA interacts with ERRy
and destabilizes it, whereas in the fasting condition OGT interacts with ERRy and stabilizes it.
Interestingly, protein levels of both OGT and OGA were increased in the fasting (Supplementary
figure 1C), which was supported by elevated OGT and OGA mRNA levels in fasting
(Supplementary figure 1D). In spite of low circulating glucose, fasting promoted O-
GlcNAcylation of ERRy. Hence we speculate that glucagon could be more important than blood
glucose for O-GIlcNAcylation of ERRy during fasting. To test this, we measured blood glucose
and glucagon levels in a fasting time course experiment (Supplementary figure 1E-F). Blood
glucose levels in fasting mice decreased from 0 to 12 h, whereas serum glucagon levels steadily
increased from 0 h, reaching a peak at 6 h followed by a decrease at 12 h, though it remained
significantly higher at 12 h than at 0 h. ERRy O-GIcNAcylation levels gradually increased from

0 h, reaching a peak at 6 h and then remaining almost the same until 12 h, suggesting that
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circulating glucagon levels are more important than circulating glucose levels for O-

GlcNAcylation of ERRy during fasting.

Glucagon increases hepatic ERRy transcriptional activity during fasting [28]. Thus we
sought to ascertain whether glucagon increases ERRy transcriptional activity by affecting O-
GlcNAcylation. Glucagon treatment significantly increased ERRy O-GIlcNAcylation levels
resulting in higher protein stability through reduced ERRy ubiquitination (Figure 2D). As both
high glucose (Figure 1B) and glucagon (Figure 2D) induced O-GlcNAcylation, we tested which
is more important for O-GIcNAcylation of ERRy. Both high levels of glucose and glucagon
increased ERRy O-GlcNAcylation levels and total protein levels. They have a cumulative effect
when applied together (Supplementary figure 1G), but unlike glucagon, glucose did not increase
ERRy mRNA levels (Supplementary figure 1H). The notion that O-GlcNAcylation mediates the
effect of glucagon on ERRY protein stability was further corroborated when overexpression of
OGA significantly reduced both O-GlcNAcylation and protein levels of ERRy (Figure 2E).
Insulin induced by feeding suppresses ERRYy transcriptional activity as well as gene expression
[28], [20]. Thus we speculate that insulin may inhibit O-GlcNAcylation of ERRy leading to
decreased protein stability. As we expected, glucagon induced ERRy O-GlcNAcylation was
significantly suppressed by insulin treatment in AMLI12 cells. ERRy ubiquitination was
markedly enhanced in presence of insulin compared to glucagon treatment resulting in lower
protein stability (Figure 2F). Taken together, these results indicate that fasting increases O-
GlcNAcylation of ERRy leading to protein stability, whereas feeding acts reciprocally to degrade

ERRY by suppressing its O-GlcNAcylation.
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ERRY is modified by O-GlcNAc at Ser317 and Ser319

In order to identify the O-GlcNAc site of ERRy we infected mouse with Ad-FLAG-ERRYy
and extracted the ERRy protein from liver tissue through immunoprecipitation (Figure 3A-B).
The mass spectrometry results show that Ser317 and Ser319 of ERRy are O-GlcNAcylated
(Supplementary Figure 2-3). The primary structure of ERRy revealed that Ser317 and Ser319
were present in the LBD of ERRy (Figure 3C) which was consistent with the previous result that
suggested O-GlcNAcylation site is in the LBD (Figure 1G). However, only Ser317 was
conserved in ERRa, ERRf and ERRy (Figure 3C). The three dimensional structure of ERRy-
LBD provides a comprehensive view of the O-GIcNAcylation site. The two O-GcNAcylated
serine residues are located at the end of helix5 of the reported ERRy-LBD structures, which is
locally stabilized with helix 6, helix 7 and a couple of strands. While Ser319 is completely
exposed to the solvent accessible surface, Ser317 is partially hidden (Figure 3D). To verify the
specific O-GlcNAcylation sites indicated by mass analysis, we constructed three site-specific
point mutant cDNAs of ERRy, Ser317Ala ERRy, Ser319Ala ERRYy, and Ser317Ala+Ser319Ala
ERRy. The single mutants (Ser317Ala ERRy and Ser319Ala ERRy) showed less O-
GlcNAcylation  compared to  wild-type ERRy, whereas the double mutant
(Ser317Ala+Ser319Ala) showed complete absence of an O-GlcNAc signal in the presence of
GlcN (Figure 3E). Interestingly, even though the single mutants showed higher O-
GlcNAcylation than the double mutant, all three mutants were highly ubiquitinated compared to
wild-type in presence of GlcN, unambiguously suggesting that O-GlcNAcylation of both Ser317
and Ser319 is required for ERRYy protein stability (Figure 3E). Consistent with these findings, we
noticed that all three mutants showed significant lower stability compared to wild-type in pulse-

chase experiment, demonstrating the importance of O-GlcNAcylation in ERRy protein stability
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(Figure 3F). This was further confirmed when all three mutants showed significantly reduced
protein levels in the presence of cycloheximide, a protein synthesis inhibitor (Supplementary
figure 4A). Next, reporter gene assay reveled that unlike wild-type, the mutant ERRy’s had no
significant transcriptional activity, suggesting that O-GlcNAcylation is required for ERRy
transcriptional activity as well (Figure 3G). All three mutants were unable to bind to the PEPCK
promoter revealing why they had no transcriptional activity (Figure 3H). Collectively, these

results illustrate that O-GlcNAcylation stabilizes ERRy and increases its transcriptional activity.

O-GlcNAcylation affects ERRy-PGC-1a interaction but not ERRy cellular localization
Increase in transcriptional activity of transcription factors in response to O-
GlcNAcylation was previously linked to their nuclear transport [7], [34]. Since the O-
GlcNAcylation mutant ERRy had practically no transcriptional activity compared to wild-type
(Figure 3G-H), we speculate that the O-GlcNAcylation mutant may not translocate into the
nucleus. Unexpectedly, the Ser317Ala+Ser319Ala ERRy was located in the nucleus, indicating
that sub-cellular localization of ERRy was not governed by O-GlcNAcylation (Figure 4A).
Transcriptional co-activator PGC-1a interacts with ERRy and is critical for ERRYy transcriptional
activity [28]. Hence, we examined whether PGC-1a could interact with Ser317Ala+Ser319Ala
ERRy. In AMLI12 cells, GIcN treatment significantly augmented O-GIcNAcylation of ERRYy as
well as ERRy-PGC-1a interaction, whereas inhibiting HBP by treating with DON, an inhibitor of
GFAT, the rate-limiting enzyme of HBP, significantly reduced O-GlcNAcylation of ERRy as
well as ERRy-PGC-la interaction. We could not detect any interaction between ERRYy
Ser317Ala+Ser319Ala and PGC-1a, supporting the idea that the HBP mediates ERRy-PGC-1a

interaction (Figure 4B). We also observed that GIcN treatment increased PGC-1a protein levels

17



Diabetes

(Figure 4B), but not mRNA levels (Supplementary figure 4B). The rise in PGC-1a protein levels
could be due to the fact that O-GIcNAcylation also stabilizes PGC-1a protein [30]. Next, STZ
treatment, an inhibitor of OGA and promoter of O-GlcNAcylation [7], [35], significantly
augmented PGC-lo-ERRy interaction, demonstrating that OGA inhibition enhances O-
GlcNAcylation of ERRYy that results in substantial increase in PGC-1a-ERRY interaction (Figure
4C). Along with ERRy (FLAG), PGC-1a (HA) protein levels were also elevated in response to
STZ treatment (Figure 4C), which is consistent with figure 4B where GIcN treatment elevated
PGC-1a protein levels. Next, we performed in vitro interaction study between PGC-1a and Gal4
construct containing either wild-type or Ser317Ala+Ser319Ala ERRy-LBD as the LBD contains
the O-GlcNAcylation site (Figure 3C). Similar to Gal4-wild-type ERRy-LBD, Gal4-
Ser317Ala+Ser319Ala ERRy-LBD protein was as stable as the wild-type one, but we could not
detect any interaction between PGC-1a and Gal4-Ser317Ala+Ser319Ala ERRy-LBD, suggesting
that O-GlcNAcylation in the LBD regulates ERRy-PGC-1a interaction (Figure 4D). Similar to
the double mutant, the two single mutants also could not interact with PGC-1a (Supplementary
figure 4C). Gal4-tk-Luc reporter gene assay revealed that Gal4-Ser317Ala+Ser319Ala ERRy-
LBD was incapable of activating the reporter gene in the presence of PGC-la (Figure 4E).
Moreover, Gal4-Ser317Ala+Ser319Ala ERRy-LBD was also unable to activate the reporter gene
even in presence of GIcN or OGT (Supplementary figure 4D). Taken together, these results
demonstrate that O-GlcNAcylation regulates ERRy-PGC-la interaction critical to ERRy

transcriptional activity.

O-GlcNAcylation regulates ERRy mediated gluconeogenic gene expression

18
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HBP induces gluconeogenic enzymes gene expression through O-GlcNAcylation [7],
[30]. ERRY is a key positive regulator of gluconeogenic enzymes gene expression [28], [18]. Our
previous results described that ERRy was O-GlcNAcylated through HBP (Figure 1A, 4B-C).
Therefore, to determine the contribution of O-GlcNAcylated ERRy in HBP induced
gluconeogenesis in MPH, we knocked down endogenous ERRy. ERRy knockdown markedly
reduced GlcN induced PEPCK and G6Pase protein levels (Figure 5A). OGT overexpression
leads to induction of gluconeogenesis and OGT knockdown improves glucose homeostasis in
diabetic mice [7], [30]. OGT overexpression significantly increased PEPCK and G6Pase mRNA
levels, and this increase in mRNA levels was greatly suppressed by ERRy knockdown in MPH
(Figure 5B, from left 1°/2™ panel). In line with PEPCK and G6Pase mRNA levels results,
glucose production was also significantly reduced in response to ERRy knock down (Figure 5B,
from left 4™ panel). Effectiveness of OGT overexpression was confirmed by western blot
analyses (Supplementary figure 4E). Next, to examine the effect of glucose or GIcN on
gluconeogenic gene promoter activity, we used wild-type and ERRE mutant PEPCK promoter
which is devoid of ERRy binding site. Exposure to glucose or GIcN increased wild-type
promoter activity but this increase was greatly reduced with the ERRE mutant PEPCK promoter
(Figure 5C). In a parallel approach, 293T cells were transfected with wild-type PEPCK promoter
along with wild-type and Ser317Ala+Ser319Ala ERRy. Wild-type ERRy considerably increased
the promoter activity which was further augmented in presence of OGT, whereas OGA co-
expression greatly impaired ERRy effect. While at the same time, Ser317Ala+Ser319Ala ERRy
could not greatly activate the promoter (Figure 5D). Next, ChIP assay was performed in MPH to
monitor the effect of HBP inhibition on ERRy recruitment to the endogenous PEPCK gene

promoter. Under basal conditions, ERRy occupied the PEPCK promoter. However, GlcN
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treatment significantly augmented ERRy occupancy on the PEPCK promoter, whereas HBP
inhibition by DON treatment markedly diminished the occupancy. We also observed a similar
binding pattern of PGC-la (Figure 5E). Together, these results demonstrate that O-

GlcNAcylation by HBP governs gluconeogenic activity of ERRY.

ERRY O-GlcNAcylation is required for hepatic gluconeogenesis

Diabetic conditions induce ERRy gene expression and promote gluconeogenesis [18].
Hence, we speculated that ERRy could be O-GlcNAcylated under diabetic conditions. As we
expected, O-GIcNAcylation of ERRy was greatly increased in HFD fed, ob/ob and db/db mice
(Figure 6A-B). Previously it was reported that diabetic conditions promoted OGT gene
expression [7]. We also noticed a significant increase in OGT mRNA levels in HFD-induced
diabetic mouse, although, OGA mRNA levels were also elevated (Supplementary figure 4F).
Overexpression of ERRy promotes hepatic gluconeogenesis and elevates blood sugar levels [28],
[18]. Therefore we compared the effect of wild-type and Ser317Ala+Ser319Ala ERRy
overexpression in mouse liver. In accordance with previous results, glucose excursion during
intraperitoneal glucose tolerance test (IPGTT) was significantly higher in Ad-wild-type ERRy—
injected mice compared to control mice, but Ad-Ser317Ala+Ser319Ala ERRy-injected mice
showed normal blood glucose levels (Figure 6C). Fasting blood glucose levels and PEPCK and
G6Pase mRNA levels were significantly higher for Ad-wild-type ERRy-infection compared to
Ad-Ser317Ala+Ser319Ala ERRy (Figure 6D). Effectiveness of ERRy overexpression was
confirmed by western blot analyses (Supplementary figure 4G). Next, to negate the effect of O-
GlcNAcylation we overexpressed OGA in mouse liver. Disrupting O-GIcNAcylation of ERRy in

mice infected with Ad-wild-type ERRy through overexpression of hepatic OGA by Ad-OGA
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greatly lowered the gluconeogenic profile (Figure 6E). Effectiveness of ERRy overexpression
was confirmed by western blot analyses (Supplementary figure 4H). Finally, on the basis of the
previous result (Figure 6C-D), we performed in vivo imaging analysis to verify the effect of O-
GlcNAcylation of ERRy on hepatic gluconeogenesis at the transcriptional levels. Ad-wild-type
ERRy-dependent induction of PEPCK promoter activity was significantly reduced in mice
injected with Ad-Ser317Ala+Ser319Ala ERRy (Figure 6F). Overall, these results suggest that O-

GlcNAcylation is prerequisite for ERRy to trigger hepatic gluconeogenesis.
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DISCUSSION

Several transcription factors promote gluconeogenesis in the fasted state and type 2 diabetes. We
hypothesize that in the fasting and diabetic states gluconeogenesis generates fructose-6-
phosphate, which is utilized by HBP to O-GlcNAcylate transcription factors and co-activators to
further promote gluconeogenesis. In the current study, we show that ERRy is stabilized by O-
GlcNAcylation in the fasted and diabetic states to promote gluconeogenic gene induction. Hence,
we suggest a positive feed-forward loop in which glucose entry into the HBP promotes

gluconeogenesis in the fasting and diabetic conditions in the liver.

Glucagon-insulin crosstalk regulates ERRy protein stability and transcriptional activity
[28], [20]. Herein, we investigated whether ERRYy protein stability and transcriptional activity is
influenced by O-GlcNAcylation. In fact, glucagon stabilized ERRy by promoting its O-
GlcNAcylation (Figure 2D-F). O-GlcNAcylation can increase protein stability and
transcriptional activity by inhibiting ubiquitination or promoting deubiquitination [30], [31],
[33]. It can also reduce protein stability and transcriptional activity by increasing ubiquitination
[36], [37]. However, we observed that O-GlcNAcylation stabilized ERRy protein by inhibiting
its ubiquitination (Figure 2D-F). Our results clearly demonstrated that incremental O-
GlcNAcylation mediated reduction in ubiquitination was a result of greater inhibition of the
interaction between ERRy and E3 ubiquitin ligase Mdm?2 that resulted in increased protein
stability (Figure 2C). Phosphorylation of GFAT1 by cAMP-dependent protein kinase blocks its
enzyme activity [38], whereas phosphorylation of GFAT2 by cAMP-dependent protein kinase
increases its enzyme activity [39]. Our observation that glucagon robustly enhances O-

GlcNAcylation of ERRy and insulin inhibits it (Figure 2F) could be due to GFAT2 activation. O-
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GlcNAcylation can affect transcription factors by modifying key residues involved in their
interaction with co-activators [40]. It can also induce important conformational changes within
transcription factors, which might have a direct impact on their activity, as demonstrated for the
estrogen receptor [41]. Three dimensional structural features of ERRy also suggest that O-
GlcNAcylation may trigger a conformational change of ERRy-LBD that contains the AF-2
domain (Figure 3D). This probable conformational change may be crucial for inhibition of
ubiquitination and ERRy-PGC-1a interaction. Perhaps, S317A ERRy and S319A ERRy, in spite
of being partially O-GlcNAcylated, were heavily ubiquitinated (Figure 3E) and were unable to
interact with PGC-1a (Supplementary figure 4C). The two single mutants may not attain the
desired conformational change required to inhibit ubiquitination and interact with co-activator
PGC-la due to incomplete O-GlcNAcylation. Further investigation is required to confirm
whether O-GlcNAcylation influences ERRy-LBD structure. Previously Yang et al. reported that
the transcripts of ERRy followed a cyclic pattern in its diurnal rhythmicity in the liver [42].
ERRYy transcripts reach maximum levels in the liver during the day time. The observed result of
O-GlcNAcylation mediated stability of ERRy may have been influenced by the diurnal

rhythmicity in the liver.

O-GIcNAcylation takes place in response to high glucose or insulin [43], [31], [44].
PGC-1a and CRTC2 undergo O-GlcNAcylation in hyperglycemic and hyperinsulinemic diabetic
mouse [30], [7]. Interestingly, low glucose conditions also promote O-GlcNAcylation [30], [7],
[9]. Glucose deprivation induces protein O-GlcNAcylation and OGT expression as well [45]. All
these reports suggest that both high and low glucose conditions promote O-GlcNAcylation in

vitro and in vivo. Glucose in the form of fructose-6-phosphate is utilized by hexosamine
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biosynthetic pathway to O-GlcNAcylate proteins under different conditions. In the fed
conditions, high circulating glucose could be converted to fructose-6-phosphate and utilized in
O-GlcNAcylation. Although the circulating glucose concentration is high in the diabetic
condition, the diabetic condition differs from the fed condition in that the activity of
glucokinase, which converts glucose to glucose-6-phosphate, is low in the liver [46], [47], [48].
Therefore, circulating glucose is less readily converted to fructose-6-phosphate in the diabetic
condition. In the diabetic conditions hepatic gluconeogenesis is significantly upregulated [49],
producing fructose-6-phosphate, which could be utilized in O-GlcNAcylation. Furthermore, in
low circulating glucose (fasting) conditions, glycogenolysis and gluconeogenesis are both called
into play to maintain blood glucose levels. During early fasting glycogenolysis, stimulated by
glucagon, produces glucose-6-phosphate which is in equilibrium with fructose-6-phosphate [50].
Therefore, glycogenolysis, especially during early fasting, is surely a major source of fructose-6-
phosphate. During short-term fasting, glucagon also triggers the initial induction of hepatic
gluconeogenesis through activation of CREB-CRTC2 [7]. In prolonged fasting, PGC-la,
FOXO1 and ERRy promote hepatic gluconeogenesis [30], [51], [28]. During that initial
induction period (short-term fasting), hepatic glycogenolysis and gluconeogenesis produce
fructose-6-phosphate which might be utilized to O-GlcNAcylate ERRy to further promote
gluconeogenesis during prolonged fasting. We observed that blood glucose levels were
decreased during fasting in a time dependent manner, whereas serum glucagon levels and ERRy
O-GlcNAcylation levels were steadily increased (Supplementary figure 1E-F), indicating that
circulating glucagon levels are more important than circulating glucose levels for O-
GlcNAcylation of ERRY in fasting. Moreover, OGT mRNA levels were significantly enhanced

in response to fasting, even though OGA mRNA levels were also enhanced but it was less

24



Page 25 of 50

Diabetes

significant compared to OGT (Supplementary figure 1D). Enhanced OGT mRNA levels could

also be responsible for fasting dependent O-GlcNAcylation of ERRY.

Conserved ERRY response element (ERRE) on the PEPCK promoter is required for the
transcription of that gene in response to fasting and diabetes mediated gluconeogenesis [28],
[18], hence we explored the role of ERRy in HBP mediated gluconeogenesis. Loss of
endogenous ERRy in primary hepatocytes led to a significant decrease in HBP-induced
gluconeogenic profile (Figure 5), implying the importance of O-GlcNAcylation of ERRY in the
context of gluconeogenesis. Diabetic conditions promote O-GlcNAcylation mediated
gluconeogenesis in the diabetic mice [7], [30]. As a matter of fact, ERRy was highly O-
GlcNAcylated in diabetic mice (Figure 6A-B). Hepatic overexpression of wild-type ERRy
caused glucose intolerance with hyperglycaemia, whereas O-GlcNAcylation mutant ERRy
overexpression showed glucose tolerance with euglycaemia in mice (Figure 6C-D). O-
GlcNAcylation was blocked by using either OGT or GFAT inhibitor or by enzymatically
modulating OGA or OGT expression to investigate the effect of their inhibition on glycemia in
diabetic mice. The OGT inhibitor alloxan was used in many studies [52], [53], [54], but it has
wide off-target effects and general cellular toxicity [55]. Another OGT inhibitor Acs-5S-
GIcNAc was used in wide range of studies [56], [57], [58], but it affects other
glycosyltransferase and impairs N-glycosylation and extracellular glycan synthesis in cultured
cell lines [59]. Moreover, the enzymatic approach modulating OGA or OGT expression was
successfully utilized to restore glucose homeostasis. Overexpression of hepatic OGA or
knockdown of hepatic OGT inhibited aberrant gluconeogenesis and significantly improved

glycemic conditions in diabetic mice [7], [30], [31]. We observed that disruption of O-
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GlcNAcylation by hepatic OGA overexpression reduced gluconeogenic profile in normal mice
expressing Ad-ERRy (Figure 6E), unambiguously illustrating that O-GlcNAcylation is

prerequisite for gluconeogenic function of ERRy.

We conclude that the fasting and diabetic conditions promote O-GlcNAcylation of ERRy.
O-GlcNAcylation is imperative for ERRy protein stability, and enhances gluconeogenic activity
of ERRy. The fed state, however, reduces O-GlcNAcylation of ERRy, resulting in ubiquitin-
mediated degradation of ERRy (Figure 6G). Our results indicate a vital role for O-
GlcNAcylation of ERRy in maintaining normal glucose levels during fasting and also in
mediating the elevated blood glucose levels in type 2 diabetes. Hence, pharmacological
inhibition of O-GlcNAcylation mediated hyper-activation of ERRy might provide a pathway for

preventing hyperglycaemia and treating type2 diabetes.
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FIGURE LEGENDS

Figure 1. ERRy is modified by O-GlcNAcylation. (A) Mouse primary hepatocytes
were treated with GIcN in a dose dependent manner for 6 h and subsequently
immunoprecipitated with ERRy antibody. Total proteins were analyzed for the O-GIcNAcylation
by immunoblot with O-GlcNAc, OGT, ERRy and o-tubulin antibodies. (B) Mouse primary
hepatocytes were incubated in 5 mM or 25 mM glucose media overnight followed by
immunoprecipitation with ERRy antibody and immunoblot with O-GIcNAc, ERRy and a-tubulin
antibodies. (C, D) HEK 293T cells were transfected with expression vector for HA-ERRy (C)
and HA-ERRa (D) alone or with expression vector for FLAG-OGT, followed by
immunoprecipitation with HA antibody and immunoblot with O-GIcNAc, HA and a-tubulin
antibodies. (E) HEK 293T cells transfected with plasmids encoding HA-ERRy and FLAG-OGA
or FLAG-OGT. At 24 h after transfection cells were treated with MG-132 (10uM) for 6 h
followed by immunoprecipitation with HA antibody and immunoblot with O-GlcNAc, ubiquitin
(Ub), HA and a-tubulin antibodies. (F) HEK 293T cells were transfected with Sft4-luc along
with the indicated plasmids. (G) HEK 293T cells were transfected with Gal4-tk-luc along with

the indicated plasmids. *p <0.05, and **P <0.005 using Student’s t-test. Error bars show + s.e.m.

Figure 2. Glucagon increases O-GlcNAcylation of ERRy. (A) C57BL/6 mice (n=5)
were fasted for 6 h and refed for 2 h, followed by liver tissue isolation. Immunoprecipitation with
ERRy antibody and immunoblot with O-GIcNAc, Ub, ERRy and o-tubulin antibodies were
performed. All of the samples were combined for western blot analyses. (B) Ad-green
fluorescent protein (GFP) or Ad-OGA was administered via tail-vein injection into C57BL/6

mice (n=6). At day 6 after injection, mice were fasted for 6 h and sacrificed. Liver tissue from
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mice was homogenized for immunoprecipitation with ERRy antibody and immunoblot with O-
GlcNAc, Ub, ERRY and a-tubulin antibodies. All of the samples were combined for western blot
analyses. (C) Liver tissue from C57BL/6 mice (n=5) fasted for different time points as indicated,
was homogenized for immunoprecipitation with ERRy antibody and immunoblot with O-
GlcNAc, OGT, Mdm2, ERRy and a-tubulin antibodies. All of the samples were combined for
western blot analyses. (D) AMLI12 cells were transfected with FLAG-ERRy. At 24 h post
transfection, cells were incubated with vehicle or glucagon (100 nM) for different time points as
indicated. Immunoprecipitation with FLAG antibody and immunoblot with O-GIcNAc, Ub,
FLAG and a-tubulin antibodies were performed. (E) AMLI12 cells were transfected with FLAG-
ERRy. At 24 h post transfection, cells were infected with Ad-GFP or Ad-OGA as indicated. At
24 h post infection, cells were incubated with glucagon (100 nM) for 6 h followed by
immunoprecipitation with FLAG antibody and immunoblot with O-GlcNAc, Ub, FLAG and a-
tubulin antibodies were performed. (F) AMLI12 cells were transfected with FLAG-ERRy. At 24
h post transfection, cells were incubated with glucagon (100 nM) for 6 h or glucagon (100 nM)
for 6 h followed by insulin (100 nM) for 6 h. Immunoprecipitation with FLAG antibody and

immunoblot with O-GIcNAc, OGT, Ub, FLAG and a-tubulin antibodies were performed.

Figure 3. ERRy is modified by O-GlcNAcylation at Ser317 and Ser319. (A) C57BL/6
mice (n=5) were injected via tail veins with adenoviral vector expressing FLAG-ERRY. Six days
later, mice were fasted for 6 h and liver extracts were prepared. The FLAG-ERRY was purified
using Anti-FLAG M2 agarose. (B) Proteins were separated using SDS-PAGE and stained by
colloidal Coomassie blue. (C) Schematic diagram of ERRy structure (amino acids, 1-458). ERRy

consists of N-terminal domain, DNA-binding domain (DBD), hinge domain, Ligand-binding
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domain (LBD) and C-terminal domain. ERRy is O-GIcNAcylated at S317 and S319. The amino
acid sequences of ERR family members, ERRa, ERRf, and ERRy are given below. (D) Two
serine residues of ERRy-LBD. Twelve LBD structures (PDB IDs 2ewp, 2gpp, 2gp7, and 2p7z)
were superimposed, which showed root-mean-square deviation values of less than 0.4 A for all
the aligned residues. ERRy-AF-2 domain is represented as an orange color surface; ERRy-LBD
as a grey-colored surface with two serine residues in space-filling models in the left and below-
right panels. On the upper-right panel, the superimposed ERRy-LBD structures are displayed
with ribbons and differentiated by colors; two serine residues are drawn as stick models. (E)
AMLI12 cells were transfected with plasmids encoding FLAG-wt ERRy, FLAG-Ser317Ala
ERRy, FLAG-Ser319Ala ERRy and FLAG-Ser317Ala+Ser319Ala ERRy. At 24 h after
transfection cells were treated with GlcN (10 mM) for 6 h and MG-132 (10 uM) for 6 h followed
by immunoprecipitation with FLAG antibody and immunoblot with O-GlcNAc, Ub, FLAG and
a-tubulin antibodies. (F) AML12 cells transfected with FLAG-wt ERRy, FLAG-S317A ERRy,
FLAG-S319A ERRy and FLAG-S317A+S319A ERRy were metabolically labeled for 30 min
followed by chase for the indicated times. FLAG-ERRy was immunoprecipitated with M2
antibody and detected by autoradiography. (G) ERRy-dependent activation of the Sft4-luc.
Transient transfection was performed in HEK 293T cells with the indicated plasmid DNAs. (H)
ChIP assay showing the occupancy of wild-type ERRy, S317A ERRy, S319A ERRy and
S317A+S319A ERRy on ERREI of PEPCK1 promoter from DMSO and GlcN-treated AMLI12

cells. ***P <0.0005 using Student’s t-test. Error bars show + s.e.m.

Figure 4. O-GlcNAcylation affects ERRy-PGC-1a interaction but not ERRYy cellular

localization. (A) Immunocytochemistry showing subcellular localization of wild-type and
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mutant ERRy in AML12. The cells were transfected with plasmids expressing FLAG-wt ERRy
and FLAG-Ser317Ala+Ser319Ala ERRy. At 24 h after transfection cells were fixed,
immunostained and observed by confocal microscopy. (B) AML12 cells were transfected with
plasmids encoding FLAG-wt ERRy and FLAG-Ser317Ala+Ser319Ala ERRy. At 24 h after
transfection cells were treated with MG-132 (10 uM) and DMSO or GlcN (10 mM) or DON (40
uM) for 6 h followed by immunoprecipitation with FLAG antibody and immunoblot with O-
GlcNAc, PGC-1a, FLAG, and a-tubulin antibodies. (C) AMLI12 cells were transfected with
plasmids encoding FLAG-wt ERRy and HA-PGC-la. At 24 h after transfection cells were
treated with DMSO or OGA inhibitor STZ (5 mM) for 6 h followed by immunoprecipitation
with HA antibody and immunoblot with FLAG, HA and a-tubulin antibodies. (D) HEK 293T
cells were transfected with plasmids encoding Gal4-wt ERRy-LBD, Gal4-Ser317Ala+Ser319Ala
ERRy-LBD and HA-PGC-1a. At 24 h post transfection immunoprecipitation with HA antibody
and immunoblot with Gal4 and HA antibodies were performed. (E) HEK 293T cells were
transfected with Gal4-tk-luc along with the indicated plasmids. *p <0.05 using Student’s t-test.

Error bars show + s.e.m.

Figure 5. O-GlcNAcylation regulates ERRy transcriptional activity. (A) Effect of
ERRy knockdown on GIlcN-induced gluconeogenic genes in mouse primary hepatocytes.
Hepatocytes were infected with Ad-US or Ad-shERRY. At 48 h post infection, cells were treated
with DMSO or GIeN (10 mM) for 6 h followed by immunoblot with PEPCK, G6Pase, ERRy and
a-tubulin antibodies. (B) Effect of ERRy knockdown on basal and OGT-induced gluconeogenic
genes in mouse primary hepatocytes. Glucose output assay was performed in mouse primary

hepatocytes. (C) Effect of Glc and GlcN on wild-type (wt) and ERRy binding site (ERRE)
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mutant PEPCK-luc. HEK 293T cells were transfected with indicated plasmids followed by Glc
or GlcN treatment. (D) O-GlcNAcylation-dependent activation of the PEPCKI1-luc by ERRy.
HEK 293T cells were transfected with indicated plasmids. (E) ChIP assay showing the
occupancy of ERRy on ERRE1 of PEPCK1 promoter from GlcN, DON-treated mouse primary

hepatocytes. *p <0.05, and **P <0.005 using Student’s t-test. Error bars show + s.e.m.

Figure 6. ERRy O-GlcNAcylation required for hepatic gluconeogenesis. (A-B) O-
GlcNAcylation of ERRy in diabetic conditions, ERRy was immunoprecipitated with ERRy
antibody followed by immunoblot with O-GlcNAc, ERRy, PEPCK and o-tubulin antibodies
from liver tissue of C57BL/6 mice (n=3) fed with normal chow diet (NCD) and high fat diet
(HFD) (A), from wild-type, ob/ob and db/db mice (n=3) (B). (C) Ad-GFP, Ad-wt ERRy or Ad-
Ser317Ala+Ser319Ala ERRy were administered via tail-vein injection into C57BL/6 mice (n=5).
Glucose tolerance test at day 5 after injection. Glucose was measured at the indicated times after
1 g/kg intraperitoneal glucose injection. (D) (Left panel) 4 h fasting blood glucose levels in
C57BL/6 mice (n=5) at day 6 after Ad-GFP, Ad-wt ERRy or Ad-Ser317Ala+Ser319Ala ERRy
injection. (Middle and right panel) qPCR analyses of total RNA isolated from liver at day 7 after
injection. (E) (Left panel) 4 h fasting blood glucose levels in C57BL/6 mice (n=5) at day 6 after
Ad-GFP, Ad-ERRy or Ad-ERRy + Ad-OGA injection. (Middle and right panel) gPCR analyses
of total RNA isolated from mice liver at day 7 after injection. (F) (Left) /n vivo imaging of
hepatic PEPCK 1-luciferase (Ad-PEPCK1-luc) activity in presence of Ad-GFP or Ad-wt ERRY or
Ad-Ser317Ala+Ser319Ala ERRy in fasted (16 h) C57BL/6 mice (n=3). (Right) Quantitation of
luciferase activity is also shown. (G) Schematic representation of the proposed model that the

fasting and diabetic conditions promote O-GIcNAcylation of ERRy. O-GlcNAcylation is
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imperative for ERRy protein stability, and enhances gluconeogenic activity of ERRy. Fed state,
however, reduces O-GlcNAcylation of ERRy, resulting in ubiquitin-mediated degradation of

ERRy. *p <0.05, **P <0.005, and ***P <0.0005 using Student’s t-test. Error bars show + s.e.m.
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FIGURE LEGENDS

Supplementary Figure 1. O-GIcNAcylation is affected by both glucosamine and high glucose
levels. (A) AMLI12 cells were treated with DMSO or GlcN (10 mM) for 6 h as indicated.
Immunoprecipitation with ERRy antibody and western blot analyses with Ub, ERRy and o-
tubulin antibodies were performed. (B) HEK 293T cells were transfected with Sft4-luc along
with the indicated plasmids followed by GlcN (10 mM) treatment for 6 h. (C) Liver tissue from
C57BL/6 mice (n=5) fasted for different time points as indicated, was homogenized for
immunoprecipitation with ERRy antibody and immunoblot with OGT, OGA and o-tubulin
antibodies. All of the samples were combined for western blot analyses. (D) Liver tissue from
C57BL/6 mice (n=5) fasted for different time points as indicated, was homogenized for RNA
isolation and qPCR analyses of total RNA. (E) Fasting blood glucose levels in C57BL/6 mice
(n=5). (F) Fasting blood glucagon levels in C57BL/6 mice (n=5). (G) AMLI12 cells were
incubated in 5 mM or 25 mM glucose media overnight followed by glucagon (100 nM) treatment
for 6 h. Immunoprecipitation with ERRy antibody and western blot analyses with O-GIcNAc,
ERRy and o-tubulin antibodies were performed as indicated. (H) AMLI12 cell were treated with
GIcN or different doses of glucose for 6 h followed by ERRy mRNA measurement by gPCR. NS,
not significant. *p <0.05, **P <0.005 and ***<0.0005 using Student’s t-test. Error bars show +

S.c.m.

Supplementary Figure 2. LC-MS/MS CID site mapping of the ERRy O-GlcNAc modification
site, Ser317. Sequence: SLSFEDELVYADDYIMDEDQSK, S1-HexNAc (203.07937 Da), M16-
Oxidation (15.99492 Da) MS/MS: CID, Charge: +3, Monoisotopic m/z: 944.40265 Da (-1.41
mmu/-1.5 ppm), MH+: 2831.19339 Da, RT: 46.62 min, Identified with: SEQUEST (v1.13);
XCorr: 2.61, Probability:3.23, Tons matched by search engine: 43/252

Fragment match tolerance used for search: 1.2 Da Fragments used for search: a-H20; a-NH3; b;

b-H20; b-NH3; ¢; y; y-H20; y-NH3; z+1

175x214mm (300 x 300 DPI)
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Supplementary Figure 3. LC-MS/MS CID site mapping of the ERRy O-GlcNAc modification

site, Ser319. Sequence: SLSFEDELVYADDYIMDEDQSK, S3-HexNAc (203.07937 Da), M16-
Oxidation (15.99492 Da), MS/MS: CID, Charge: +3, Monoisotopic m/z: 944.40356 Da (-0.5
mmu/-0.53 ppm), MH+: 2831.19614 Da, RT: 46.73 min, Identified with: SEQUEST (v1.13);
XCorr:2.56, Probability:3.11, Ions matched by search engine: 39/208

Fragment match tolerance used for search: 1.2 Da ERRG #

Supplementary Figure 4. O-GlcNAcylation affects ERRy protein stability and activity. (A)
HEK 293T cells were transfected with plasmids encoding FLAG-wt ERRy, FLAG-Ser317Ala
ERRy, FLAG-Ser319Ala ERRy and FLAG-Ser317Ala+Ser319Ala ERRy. At 24 h after
transfection cells were treated with cycloheximide (CHX) (10 mg/mL) for the indicated times
and FLAG-ERRYy levels were detected by immunoblot using FLAG and o-tubulin antibodies. (B)
AMLI12 cell were treated with DMSO or GlcN or DON for 6 h followed by PGC-lo. mRNA
measurement by gPCR. NS, not significant. (C) HEK 293T cells were transfected with plasmids
encoding FLAG-wt ERRy, FLAG-Ser317Ala ERRy, FLAG-Ser319Ala ERRy, FLAG-
Ser317Ala+Ser319Ala ERRy and HA-PGC-1la. At 24 h post transfection cells were treated with
MG-132 (10 uM) for 6 h followed by immunoprecipitation with HA antibody and immunoblot
with FLAG, HA and o-tubulin antibodies. (D) HEK 293T cells were transfected with Gal4-tk-luc
along with the indicated plasmids followed by GlcN (10 mM) treatment for 6 h. (E) Effectiveness
of OGT overexpression was confirmed by western blot analyses. Mouse Primary hepatocytes
were first infected with Ad-US or Ad-shERRy followed by Ad-GFP or Ad-OGT infection as
indicated. Total proteins were analyzed for the FLAG expression by immunoblot. (F) Liver tissue
of C57BL/6 mice (n=3) fed with NCD or HFD was homogenized for RNA isolation and qPCR
analyses of total RNA. (G) Effectiveness of ERRy overexpression was confirmed by western blot
analyses. Ad-GFP, Ad-wt ERRy or Ad-Ser317Ala+Ser319Ala ERRy was administered via tail-
vein injection into C57BL/6 mice (n=5). Total proteins were isolated at day 7 after injection and
analyzed for the FLAG expression by immunoblot. (H) Effect of OGA overexpression on ERRy
was examined by western blot analyses. Ad-GFP, Ad-wt ERRy or Ad-wt ERRy +Ad-OGA was
administered via tail-vein injection into C57BL/6 mice (n=5). Total proteins were isolated at day
7 after injection and analyzed for ERRy expression by immunoblot. *p <0.05, **P <0.005 and

*#%<0.0005 using Student’s t-test. Error bars show =+ s.e.m.
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Supplementary Figure 3
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Serine 319 O-GIcNAcylation

HexNAc (203.07937 Da)
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Supplementary Figure 4
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