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Posttranslational modifications (PTMs) play vital roles in 
expanding protein functional diversity and critically affect 
numerous biological processes (1). The availability of pro-
teins with specific modifications at selected residues is es-
sential for experimental strategies to investigate 
fundamental biological mechanisms. Methods to generate 
diverse native protein covalent modifications currently do 
not exist. Genetic code expansion approaches are useful in 
producing recombinant proteins with specific modifications 
(2, 3), but rely on the availability of an orthogonal 
tRNA•tRNA synthetase pair for acylation of a specific non-
canonical amino acid. Despite much progress, the creation 
of many important protein modifications (e.g., trimethyl 
lysine) is not yet feasible. Among chemical conjugation ap-
proaches (4), Cys-based strategies have been widely applied 
to generate protein conjugates (5) and mimics of PTMs (6, 
7). Yet the final products are PTM analogs whose value for 
searching out unidentified properties of the natural system 
may be questionable (8). Thus, despite extensive efforts, syn-
thetic approaches for many authentic PTMs are not availa-
ble, as no C-C bond forming reactions have been 
successfully applied to protein modifications despite the 
prevalence of such reactions in organic chemistry (9). 

Here, we propose a 3-step strategy (Fig. 1A) that, in prin-
ciple, is applicable to generate diverse forms of authentic 
and selective protein modifications. (i) The site of the in-
tended modification is established by cotranslational Sep 
incorporation into a recombinant protein using the Sep or-
thogonal Escherichia coli translation system (10, 11). (ii) 

Then the Sep residue of the purified recombinant protein is 
converted by phosphate removal to Dha which in turn 
serves as a radicalophile enabling a bio-orthogonal chemical 
reaction. (iii) Finally, PTM moieties are directly coupled to 
Dha via metal-mediated conjugate additions of alkyl iodides 
in aqueous solution facilitating chemo-selective carbon-
carbon bond formation in proteins (Fig. 1B). 

To demonstrate the feasibility and versatility of our 
strategy, we set out to generate recombinant Xenopus laevis 
histone H3K79 with five different modifications—
monomethylation, dimethylation, trimethylation, formyla-
tion, and acetylation. Reversible lysine methylation in pro-
teins presents the most complex and dynamic modification 
(12). Several approaches have attempted Lys methylation 
(13), but the trimethylated product proved elusive. Histone 
H3K79 appears to be dynamically regulated (14) and associ-
ated with diverse cellular processes; its exact role has not 
been fully examined owing to the lack of generating such 
authentically modified histones. 

First, the Sep-containing histone H3Sep79 was made by 
expressing a X. laevis histone H3 mRNA containing a UAG 
codon at position 79 and a coding sequence for a C-terminal 
His6 tag in E. coli containing the orthogonal Sep translation 
system (the engineered SepRS9•tRNASep pair and the 
evolved EF-Sep21) (11). H3Sep79 was routinely obtained in 
good yield (~ 20 mg/L of culture) (fig. S1). The incorporation 
of Sep at the intended position 79 was confirmed by 
MALDI-TOF mass spectrometry (MS) analysis of the puri-
fied recombinant histone (fig. S2) and its tryptic peptides 
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(Fig. 2A and tables S1 and S2). 
As phosphoamino acids are known to be labile under al-

kaline conditions (15), we attempted to convert Sep to Dha 
by mild alkali treatment. To determine the optimal proce-
dure, purified H3Sep79 was incubated with LiOH, Ba(OH)2 
or Sr(OH)2 under different conditions, followed by neutrali-
zation with acetic acid and dialysis against distilled water 
(fig. S3). The reaction progress was analyzed by MALDI-TOF 
MS after in-gel trypsin digestion (tables S1 and S2). Near-
complete disappearance of the Sep residue and concurrent 
generation of Dha took 30 min at room temperature in 40 
mM Ba(OH)2 solution. Mass analysis of whole protein (fig. 
S4) and tryptic peptides (Fig. 2A) demonstrated that these 
conditions led to highly selective chemical transformation of 
H3Sep79 into H3Dha79 with no noticeable side reactions 
including protein oxidation (16). 

Dha-mediated conjugation approaches have been suc-
cessfully applied to the generation of thiol-linked PTM ana-
logs or mimics (17, 18). To produce authentic PTMs from 
Dha, we needed a new coupling scheme enabling chemo-
selective carbon-carbon bond formation in proteins (Fig. 
1B). We were encouraged by reports of water-based organic 
reactions in which an alkene group functions as a radical 
acceptor (19). Knowing that Dha could function as a radical 
acceptor, we chose alkyl radicals which can be generated 
from alkyl iodides by transition metals (19). Inspired by re-
cent metal-mediated conjugate addition reactions (20), we 
reasoned that organozinc species would form from the pre-
cursor halides and Zn metal. Subsequently zinc-to-copper 
transmetalation would occur, generating organocopper rea-
gents, which would lead to formation of alkyl radical spe-
cies. Finally, conjugate coupling of the alkyl radical with the 
Dha residue of a protein would take place (Fig. 1B). To 
demonstrate the proposed coupling scheme, we tested first 
the addition of trimethyl iodide (3-iodo-N,N,N,-
trimethylpropan-1-amine, 3; fig. S5) to H3Dha79 to generate 
the expected product H3K79me3. The reaction products 
were analyzed by Western blotting using an anti-H3K79me3 
antibody. Our initial attempts of directly employing water-
based organic reactions were unsuccessful. After testing a 
large array of conditions (described in the supplementary 
materials, figs. S6 to S16): different buffers and pH ranges, 
surfactants for protein stabilization, essential reagents for 
the metal-mediated coupling reaction (Zn metals, copper 
salts), and possible auxiliary reagents [e.g., tetramethyleth-
ylenediamine (TMEDA)] we arrived at conditions that re-
producibly led to the formation of C-C bonds in high yield. 
The deduced optimal conditions were: H3Dha79 (10 μM), 
alkyl iodide (30 mM), Zn powder (0.4 mg), Cu(OAc)2 (1 mM), 
Triton X-100 (2.0 wt%), and TMEDA (10 mM) in sodium 
acetate (pH 4.5, 0.5M). Reactions (20-50 μL) were incubated 
at room temperature. 

With optimized reaction conditions in hand, we at-
tempted to synthesize H3K79me1, H3K79me2, and 
H3K79me3 by incubating H3Dha79 with three different me-
thyl iodides: monomethyl iodide (3-iodo-N-methylpropan-1-
amine, 1), dimethyl iodide (3-iodo-N,N-dimethylpropan-1-
amine, 2) or trimethyl iodide (Fig. 2C and fig. S5). MALDI-
TOF MS analysis revealed disappearance of Dha and con-
comitant generation of methylated lysine residues (Fig. 2A). 
The coupling reactions were highly selective and efficient 
(normally >80%), as demonstrated by mass analyses of tryp-
tic peptides (Fig. 2A and table S2) and whole proteins (fig. 
S17), and had a good recovery yield (between 50-70%). Selec-
tive and differential Lys methylations were also demon-
strated by Western blot analysis using anti-H3K79me1, anti-
H3K79me2, and anti-H3K79me3 antibodies (Fig. 2B). To 
determine whether other PTM moieties could be coupled 
onto H3Dha79, we synthesized formyl iodide (N-(3-
iodopropyl)formamide, 4) and acetyl iodide (N-(3-
iodopropyl)-acetamide, 5; fig. S5), and used them for pro-
ducing histones H3K79Nε-formyl and H3K79Nε-acetyl, re-
spectively, as verified by MALDI-TOF MS analysis (fig. S18). 

To demonstrate whether our 3-step synthesis can be uti-
lized for modification of other proteins, we set out to gener-
ate ubiquitin variants with site-specific modifications. Eight 
ubiquitin variants with various Lys modifications (acetyla-
tion and differential methylations) at position 33 or 48 were 
efficiently generated (fig. S19 and tables S3 to S5). Also, we 
found that different alkyl iodides (iodoethane, 6; 2-
iodopropane, 7; 2-iodo-2-methylpropane, 8; 1-iodobutane, 9; 
iodocyclopentane, 10; 3-iodopronionic acid, 11; and tert-
butyl-iodobutoxydimetylsilane, 12) (fig. S5) were efficiently 
conjugated to Ub33Dha (fig. S20 and table S4). In particu-
lar, coupling of dansyl iodide (5-(dimethylamino)-N-(2-((3-
iodopropyl)amino)ethyl)naphthalene-1-sulfonamide, 13; fig. 
S5) onto Ub33Dha led to site-specific fluorescent dye label-
ing via carbon-carbon bond formation (figs. S20 and S21 
and table S4). Lastly, site-specific Lys204 trimethylation of 
green fluorescence protein (GFP) by our 3-step synthetic 
route led to the desired product GFPK204me3 but with low-
er conversion efficiency (~ 20%) and recovery yield (~ 30%) 
compared to histone H3 and ubiquitin (fig. S22 and tables 
S6 and S7). Clearly the structural context within the protein 
may affect the ease of modification. These data show that 
our approach is applicable to a variety of proteins. Since 
each protein behaves differently with the diverse chemical 
reagents, individualized optimization should lead to effi-
cient implementation of our synthetic strategy with other 
proteins. 

Next, we performed biochemical assays with the modi-
fied histones generated by our 3-step approach to examine if 
they are fully functional in the biological context. Genome-
wide analyses of chromatin revealed that H3K79 methyla-
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tion is enriched in actively transcribing regions (14), but its 
detailed role is not yet well understood. A transcription as-
say using in vitro assembled chromatin templates and a 
highly purified RNA polymerase II transcription apparatus 
provides a biochemically defined system to study the func-
tions of individual histone modifications. The modified his-
tones H3K79me1, H3K79me2, and H3K79me3 were first 
assembled with H2A, H2B, and H4 to form histone octam-
ers. The methylated histones displayed no noticeable differ-
ence compared with the unmodified (intact) histone during 
octamer assembly and nucleosome reconstitution (fig S23). 
Recombinant chromatin templates were reassembled with 
the histone octamers and a p53ML plasmid and were ap-
plied to p53 (activator)- and p300 (coactivator)-dependent 
in vitro transcription assays (Fig. 3A) (21). Intact chromatin 
lacking methylation showed a low level of transcription only 
in the presence of both activator and coactivator as expected 
(Fig. 3B). Notably, the levels of basal (activator- and/or coac-
tivator-independent) transcription from chromatins with all 
three methylation states were greatly enhanced (Fig. 3B). As 
well, activator- or coactivator-dependent transcription from 
H3K79-methylated chromatin was elevated (Fig. 3B), 
demonstrating a direct stimulatory effect of H3K79 methyla-
tion on chromatin transcription. More importantly, we also 
found that H3K79 methylation increased histone acetylation 
mediated by p300 (Fig. 3C). Interestingly, histone acetyla-
tion was differentially affected by the level of H3K79 meth-
ylation (Fig. 3C). Thus, H3K79 methylation is indeed 
positively associated with transcription activation via p300-
mediated histone acetylation, which is differently affected 
by the various methylation states (Fig. 3D). These results 
illustrate that the methylated histones are fully active and 
functionally distinct depending on the modification level, 
demonstrating the utility and gentle nature of our 3-step 
approach. 

An open question concerns the diastereoselectivity of our 
coupling reaction. It is known that radical and thiol conju-
gate additions to Dha will lead to epimeric mixtures (22–
24); a firm analysis of the epimeric ratio will require high-
resolution crystallography of the protein. However, the ste-
ric context of the local protein conformation may signifi-
cantly affect the final diastereomeric ratio of the products. 
The fact that our synthetic proteins H3K79me1, H3K79me2, 
and H3K79me3 were well recognized by antibodies, and that 
these modified histones could assemble into octamers with 
biological in vitro activity, underscores the utility of our ap-
proach. 

We anticipate that with well-tailored alkyl iodides [e.g., 
(25)] our approach can be extended to produce designer 
proteins with diverse forms of chemical modifications (e.g., 
glycosylated amino acids, phosphotyrosine). Such efforts 
will markedly expand the available chemical diversity in 

proteins and facilitate the study of many PTM-mediated 
biological processes. 
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Fig. 1. Scheme for protein chemical modifications. (A) Schematic representation of the 3-step synthesis of 
proteins with authentic PTMs. (B) New coupling scheme enables chemo-selective carbon-carbon bond formation 
in proteins. 
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Fig. 2. Synthesis of proteins with selective differential methylations. (A) MALDI-TOF 
MS analysis of proteins after trypsin digestion. Formation of H3Sep79 evidenced by the 
Sep-containing peptide (Sep79, blue). Synthesis of H3Dha79 generates a new Dha-
containing peptide (Dha79, green), but eliminates the Sep-containing peptide. Coupling 
of the methyl iodides onto H3Dha79 produces new methylated lysine-containing 
peptides, K79me1, K79me2, and K79me3 (red). (B) Western blot analysis of the 
modified proteins using anti-H3K79me1, anti-H3K79me2, and anti-H3K79me3 
antibodies. (C) Chemical structures of Lys and differentially methylated Lys residues.  
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Fig. 3. Effects of H3K79 methylation on chromatin transcription. 
(A) Schematic of the standard in vitro transcription assay. (B) Effect of 
methylated H3K79 on chromatin transcription. (C) Effect of 
methylated H3K79 on p300-mediated chromatin acetylation. Histone 
acetylation status was monitored by fluorography. (D) Schematic 
representation of transcriptional activation by H3K79 methylation. 
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